Graphical Abstract

The dynamics of a spacecraft propelled by a continuous radial thrust resembles that of a nonlinear oscillator. This is analyzed in this work with a novel method that combines the definition of a suitable homotopy with a classical perturbation approach, in which the low thrust is assumed to be a perturbation of the nominal Keplerian motion. The homotopy perturbation method provides the analytical (approximate) solution of the dynamical equations in polar form to estimate the corresponding spacecraft propelled trajectory with a short computational time. The accuracy of the analytical results was tested in an orbital-targeting mission scenario.
Tsien, H. S. Take-off from satellite orbit. Journal of the American Rocket Society, 1953, 23(4): 233–236.
Prussing, J. E., Coverstone-Carroll, V. Constant radial thrust acceleration redux. Journal of Guidance, Control, and Dynamics, 1998, 21(3): 516–518.
Quarta, A. A., Mengali, G. Radially accelerated trajectories for variable mass spacecraft. Aerospace Science and Technology, 2015, 43: 219–225.
Urrutxua, H., Lara, M. Constant, radial low-thrust problem including first-order effects of J2. Journal of Guidance, Control, and Dynamics, 2016, 39(12): 2766–2771.
Urrutxua, H., Morante, D., Sanjurjo-Rivo, M., Peláez, J. DROMO formulation for planar motions: Solution to the Tsien problem. Celestial Mechanics and Dynamical Astronomy, 2015, 122(2): 143–168.
Izzo, D., Biscani, F. Explicit solution to the constant radial acceleration problem. Journal of Guidance, Control, and Dynamics, 2014, 38(4): 733–739.
Bassetto, M., Quarta, A. A., Mengali, G., Cipolla, V. Spiral trajectories induced by radial thrust with applications to generalized sails. Astrodynamics, 2021, 5(2): 121–137.
Gong, S., Macdonald, M. Review on solar sail technology. Astrodynamics, 2019, 3(2): 93–125.
Quarta, A. A., Mengali, G., Niccolai, L. Smart dust option for geomagnetic tail exploration. Astrodynamics, 2019, 3(3): 217–230.
Vulpetti, G., Circi, C., Pino, T. Coronal Mass Ejection early-warning mission by solar-photon sailcraft. Acta Astronautica, 2017, 140: 113–125.
Bassetto, M., Niccolai, L., Boni, L., Mengali, G., Quarta, A. A., Circi, C., Pizzurro, S., Pizzarelli, M., Pellegrini, R. C., Cavallini, E. Sliding mode control for attitude maneuvers of Helianthus solar sail. Acta Astronautica, 2022, 198: 100–110.
Mengali, G., Quarta, A. A., Aliasi, G. A graphical approach to electric sail mission design with radial thrust. Acta Astronautica, 2013, 82(2): 197–208.
Bassetto, M., Niccolai, L., Quarta, A. A., Mengali, G. A comprehensive review of Electric Solar Wind Sail concept and its applications. Progress in Aerospace Sciences, 2022, 128: 100768.
Bassetto, M., Quarta, A. A., Mengali, G. Generalized sail trajectory approximation with applications to MagSails. Aerospace Science and Technology, 2021, 118: 106991.
Peláez, J., Hedo, J. M., Andrés, P. R. A special perturbation method in orbital dynamics. Celestial Mechanics and Dynamical Astronomy, 2007, 97(2): 131–150.
Avanzini, G., Palmas, A., Vellutini, E. Solution of low-thrust lambert problem with perturbative expansions of equinoctial elements. Journal of Guidance, Control, and Dynamics, 2015, 38(9): 1585–1601.
Niccolai, L., Quarta, A. A., Mengali, G. Solar sail trajectory analysis with asymptotic expansion method. Aerospace Science and Technology, 2017, 68: 431–440.
Niccolai, L., Quarta, A. A., Mengali, G. Two-dimensional heliocentric dynamics approximation of an electric sail with fixed attitude. Aerospace Science and Technology, 2017, 71: 441–446.
Bombardelli, C., Baù, G., Peláez, J. Asymptotic solution for the two-body problem with constant tangential thrust acceleration. Celestial Mechanics and Dynamical Astronomy, 2011, 110(3): 239–256.
Niccolai, L., Quarta, A. A., Mengali, G. Orbital motion approximation with constant circumferential acceleration. Journal of Guidance, Control, and Dynamics, 2018, 41(8): 1783–1789.
He, J. H. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 1999, 178(3–4): 257–262.
He, J. H. Homotopy perturbation method with an auxiliary term. Abstract and Applied Analysis, 2012, 2012: 857612.
Liao, S. J. An approximate solution technique not depending on small parameters: A special example. International Journal of Non-Linear Mechanics, 1995, 30(3): 371–380.
Liao, S. J. Boundary element method for general nonlinear differential operators. Engineering Analysis with Boundary Elements, 1997, 20(2): 91–99.
Sedighi, H., Daneshmand, F. Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term. Journal of Applied and Computational Mechanics, 2014, 1(1): 1–9.
Sullo, N., Peloni, A., Ceriotti, M. Low-thrust to solar-sail trajectories: A homotopic approach. Journal of Guidance, Control, and Dynamics, 2017, 40(11): 2796–2806.
He, J. H., El-Dib, Y. O. Homotopy perturbation method for Fangzhu oscillator. Journal of Mathematical Chemistry, 2020, 58(10): 2245–2253.
Elías-Zúñiga, A., Palacios-Pineda, L. M., Jiménez-Cedeño, I. H., Martínez-Romero, O., Trejo, D. O. He's frequency–amplitude formulation for nonlinear oscillators using Jacobi elliptic functions. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39(4): 1216–1223.
Akinyemi, L., Şenol, M., Huseen, S. N. Modified homotopy methods for generalized fractional perturbed Zakharov–Kuznetsov equation in dusty plasma. Advances in Difference Equations, 2021, 2021: 45.
Quarta, A. A., Mengali, G. New look to the constant radial acceleration problem. Journal of Guidance, Control, and Dynamics, 2012, 35(3): 919–929.
Niccolai, L., Quarta, A. A., Mengali, G. Approximate solution of spacecraft motion with an inward constant radial acceleration. Aerospace Science and Technology, 2022, 120: 107288.
Lei, H. L. Dynamical models for secular evolution of navigation satellites. Astrodynamics, 2020, 4(1): 57–73.
He, B. Y., Shen, H. X. Solution set calculation of the Sun-perturbed optimal two-impulse trans-lunar orbits using continuation theory. Astrodynamics, 2020, 4(1): 75–86.
Shampine, L. F., Reichelt, M. W. The MATLAB ODE suite. SIAM Journal on Scientific Computing, 1997, 18(1): 1–22.