AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A high-order target phase approach for the station-keeping of periodic orbits

Surrey Space Centre, University of Surrey, Guildford, GU2 7XH, UK
Te Pūnaha Ātea - Auckland Space Institute, University of Auckland, Auckland 1010, New Zealand
Show Author Information

Graphical Abstract

Abstract

A novel high-order target phase approach (TPhA) for the station-keeping of periodic orbits is proposed in this work. The key elements of the TPhA method, the phase-angle Poincaré map and high-order maneuver map, are constructed using differential algebra (DA) techniques to determine station-keeping epochs and calculate correction maneuvers. A stochastic optimization framework tailored for the TPhA-based station-keeping process is leveraged to search for fuel-optimal and error-robust TPhA parameters. Quasi-satellite orbits (QSOs) around Phobos are investigated to demonstrate the efficacy of TPhA in mutli-fidelity dynamical models. Monte Carlo simulations demonstrated that the baseline QSO of JAXA’s Martian Moons eXploration (MMX) mission could be maintained with a monthly maneuver budget of approximately 1 m/s.

References

[1]
Guzzetti, D., Zimovan, E. M., Howell, K. C., Davis, D. C. Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits. In: Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, TX, USA, 2017, 160: 3199–3218.
[2]
Qi, Y., de Ruiter, A. Station-keeping strategy for real translunar libration point orbits using continuous thrust. Aerospace Science and Technology, 2019, 94: 105376.
[3]
LaFarge, N. B., Miller, D., Howell, K. C., Linares, R. Autonomous closed-loop guidance using reinforcement learning in a low-thrust, multi-body dynamical environment. Acta Astronautica, 2021, 186: 1–23.
[4]
Zhang, R. K., Wang, Y., Shi, Y., Zhang, C., Zhang, H. Performance analysis of impulsive station-keeping strategies for cis-lunar orbits with the ephemeris model. Acta Astronautica, 2022, 198: 152–160.
[5]
Folta, D., Pavlak, T., Howell, K., Woodard, M., Woodfork, D. Stationkeeping of Lissajous trajectories in the Earth–Moon system with applications to ARTEMIS. In: Proceedings of the 20th AAS/AIAA Space Flight Mechanics Meeting, San Diego, CA, USA, 2010: AAS 10-113.
[6]
Howell, K. C., Keeter, T. M. Station-keeping strategies for libration point orbit—Target point and Floquet mode approaches. Spaceflight Mechanics, 1995: 1377–1396.
[7]
Scheeres, D. J., Hsiao, F. Y., Vinh, N. X. Stabilizing motion relative to an unstable orbit: Applications to spacecraft formation flight. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 62–73.
[8]
Howell, K. C., Pernicka, H. J. Station-keeping method for libration point trajectories. Journal of Guidance, Control, and Dynamics, 1993, 16(1): 151–159.
[9]
Gómez, G., Howell, K., Masdemont, J., Simó, C. Station-keeping strategies for translunar libration point orbits. Advances in Astronautical Sciences, 1998, 99(2): 949–967.
[10]
Oguri, K., Oshima, K., Campagnola, S., Kakihara, K., Ozaki, N., Baresi, N., Kawakatsu, Y., Funase, R. EQUULEUS trajectory design. The Journal of the Astronautical Sciences, 2020, 67(3): 950–976.
[11]
Tos, D. A. D., Yamamoto, T., Ozaki, N., Tanaka, Y., Gonzalez-Franquesa, F., Pushparaj, N., Celik, O., Takashima, T., Nishiyama, K., Kawakatsu, Y. Operations-driven low-thrust trajectory optimization with applications to DESTINY+. In: Proceedings of the AIAA SciTech 2020 Forum, Orlando, FL, USA, 2020: 2182.
[12]
Fu, X. Y., Baresi, N., Armellin, R. Stochastic optimization for stationkeeping of periodic orbits using a high-order target point approach. Advances in Space Research, 2022, 70(1): 96–111.
[13]
Ciccarelli, E., Baresi, N. Consider covariance analyses of periodic and quasi-periodic orbits around Phobos. In: Proceedings of the 2021 AAS/AIAA Astrodynamics Specialist Conference, virtual, 2021: AAS 21-617.
[14]
Bernardini, N., Baresi, N., Armellin, R. Orbit maintenance of periodic and quasi-periodic orbits around small planetary moons via convex optimization. In: Proceedings of the 2021 AAS/AIAA Astrodynamics Specialist Conference, virtual, 2021: AAS 21-626.
[15]
Koon, W. S., Lo, M. W., Marsden, J. E., Ross, S. D. Dynamical systems, the three-body problem and space mission design. Equadiff 99, 2000: 1167–1181.
[16]
Szebehely, V. Theory of Orbit: The Restricted Problem of Three Bodies. New York: Academic Press, 1967.
[17]
Baresi, N., Dei Tos, D. A., Ikeda, H., Kawakatsu, Y. Trajectory design and maintenance of the Martian moons eXploration mission around Phobos. Journal of Guidance, Control, and Dynamics, 2020, 44(5): 996–1007.
[18]
Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. Numerical Recipes, 3rd edn: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007.
[19]
He, Y. C., Armellin, R., Xu, M. Bounded relative orbits in the zonal problem via high-order Poincaré maps. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 91– 108.
[20]
Berz, M. Modern Map Methods in Particle Beam Physics. Cambridge, UK: Academic Press, 1999.
[21]
Fu, X., Baresi, N., Armellin, R. A high-order target point approach to the stationkeeping of near rectilinear halo orbits. In: Proceedings of the 71th International Astronautical Congress, 2020: IAC-20-C1.6.3, CyberSpace edition.
[22]
Tos, D. A. D., Baresi, N. Genetic optimization for the orbit maintenance of libration point orbits with applications to EQUULEUS and LUMIO. In: Proceedings of the AIAA SciTech 2020 Forum, Orlando, FL, USA, 2020: 0466.
[23]
Di Lizia, P., Armellin, R., Bernelli-Zazzera, F., Berz, M. High order optimal control of space trajectories with uncertain boundary conditions. Acta Astronautica, 2014, 93: 217–229.
[24]
Wittig, A., Di Lizia, P., Armellin, R., Makino, K., Bernelli-Zazzera, F., Berz, M. Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting. Celestial Mechanics and Dynamical Astronomy, 2015, 122(3): 239–261.
[25]
Hénon, M. Numerical exploration of the restricted problem. Astronomy and Astrophysics, 1969, 1: 223–238.
[26]
Oberst, J., Wickhusen, K., Willner, K., Gwinner, K., Spiridonova, S., Kahle, R., Coates, A., Herique, A., Plettemeier, D., Díaz-Michelena, M., et al. DePhine—the Deimos and Phobos interior explorer. Advances in Space Research, 2018, 62(8): 2220–2238.
[27]
Xu, M., Xu, S. J. Exploration of distant retrograde orbits around Moon. Acta Astronautica, 2009, 65(5–6): 853–860.
[28]
Campagnola, S., Yam, C. H., Tsuda, Y., Ogawa, N., Kawakatsu, Y. Mission analysis for the Martian Moons Explorer (MMX) mission. Acta Astronautica, 2018, 146: 409–417.
[29]
Murchie, S. L., Thomas, P. C., Rivkin, A. S., Chabot, N. L. Phobos and Deimos. In: Asteroids IV. Tucson, AZ, USA: University of Arizona Press, 2015: 451.
Astrodynamics
Pages 61-75
Cite this article:
Fu X, Baresi N, Armellin R. A high-order target phase approach for the station-keeping of periodic orbits. Astrodynamics, 2024, 8(1): 61-75. https://doi.org/10.1007/s42064-023-0169-1

293

Views

22

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 05 April 2023
Accepted: 24 May 2023
Published: 08 February 2024
© The Author(s)

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return