AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Autonomous navigation of an asteroid orbiter enhanced by a beacon satellite in a high-altitude orbit

University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
Show Author Information

Graphical Abstract

Abstract

This study aims to assess the autonomous navigation performance of an asteroid orbiter enhanced using an inter-satellite link to a beacon satellite. Autonomous navigation includes the orbit determination of the orbiter and beacon, and asteroid gravity estimation without any ground station support. Navigation measurements were acquired using satellite-to-satellite tracking (SST) and optical observation of asteroid surface landmarks. This study presents a new orbiter-beacon SST scheme, in which the orbiter circumnavigates the asteroid in a low-altitude strongly-perturbed orbit, and the beacon remains in a high-altitude weakly-perturbed orbit. We used Asteroid 433 Eros as an example, and analyzed and designed low- and high-altitude orbits for the orbiter and beacon. The navigation measurements were precisely modeled, extended Kalman filters were devised, and observation configuration was analyzed using the Cramer-Rao lower bound (CRLB). Monte Carlo simulations were carried out to assess the effects of the orbital inclination and altitudes of the orbiter and beacon as key influencing factors. The simulation results showed that the proposed SST scheme was an effective solution for enhancing the autonomous navigation performance of the orbiter, particularly for improving the accuracy of gravity estimation.

References

[1]
Getzandanner, K. M., Antreasian, P. G., Moreau, M. C., Leonard, J. M., Adam, C. D., Wibben, D., Berry, K., Highsmith, D., Lauretta, D. Small body proximity operations & TAG: Navigation experiences & lessons learned from the OSIRIS-REx mission. In: Proceedings of the AIAA SCITECH 2022 Forum, San Diego, California, USA & virtual, 2022: AIAA 2022-2387.
[2]

Takei, Y., Saiki, T., Yamamoto, Y., Mimasu, Y., Takeuchi, H., Ikeda, H., Ogawa, N., Terui, F., Ono, G., Yoshikawa, K., et al. Hayabusa2's station-keeping operation in the proximity of the asteroid Ryugu. Astrodynamics, 2020, 4(4): 349–375.

[3]

Watanabe, S. I., Tsuda, Y., Yoshikawa, M., Tanaka, S., Saiki, T., Nakazawa, S. Hayabusa2 mission overview. Space Science Reviews, 2017, 208(1–4): 3–16.

[4]

Mimasu, Y., Yoshikawa, K., Ono, G., Ogawa, N., Terui, F., Takei, Y., Saiki, T., Tsuda, Y. Ground-based low altitude hovering technique of Hayabusa2. Astrodynamics, 2020, 4(4): 331–347.

[5]

Gaskell, R. W. Optical navigation near small bodies. Spaceflight Mechanic, 2011, 140: 1705–1717.

[6]

Muller, E. S., Kachmar, P. M. A new approach to on-board orbit navigation. Navigation, 1971, 18(4): 369–385.

[7]

Hill, K., Born, G. H. Autonomous interplanetary orbit determination using satellite-to-satellite tracking. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 679–686.

[8]

Hill, K., Born, G. H., Lo, M. W. Linked, Autonomous, Interplanetary Satellite Orbit Navigation (LiAISON) in Lunar Halo Orbits. Advances in the Astronautical Sciences, 2006, 123: 2369–2388.

[9]
Leonard, J., Jones, B., Villalba, E., Born, G. Absolute orbit determination and gravity field recovery for 433 Eros using satellite-to-satellite tracking. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota, USA, 2012: AIAA 2012-4877.
[10]
Hesar, S., Parker, J. S., Mcmahon, J., Born, G. Small body gravity field estimation using LiAISON supplemented optical navigation. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2015.
[11]
Stacey, N., D'Amico, S. Autonomous swarming for simultaneous navigation and asteroid characterization. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Snowbird, Utah, USA, 2018: 1.
[12]
Stacey, N., Dennison, K., D'Amico, S. Autonomous asteroid characterization through nanosatellite swarming. In: Proceedings of the 2022 IEEE Aerospace Conference, Big Sky, Montana, USA, 2022: 1–21.
[13]
Atchison, J. A. NIAC swarm flyby gravimetry phase Ⅱ report. Technical Report, No. HQ-E-DAA-TN58797, 2017.
[14]
Fujimoto, K., Stacey, N., Turner, J. M. Stereoscopic image velocimetry as a measurement type for autonomous asteroid gravimetry. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Long Beach, California, USA, 2016: AIAA 2016-5566.
[15]
Miller, J. K., Antreasian, P. G., Bordi, J. J, Chesley, S., Helfrich, C. E., Konopoliv, A., Owen, W. M., Wang, T. C., Williams, B. G., Yeomans, D. K. Determination of Eros' physical parameters from Near Earth Asteroid Rendezvous (NEAR) orbit phase navigation data. In: Proceedings of the AlAA/AAS Astrodynamics Specialist Conference, Denver, Colorado, USA, 2000: AIAA 2000-4422.
[16]

Anthony, N., Emami, M. R. Asteroid engineering: The state-of-the-art of Near-Earth Asteroids science and technology. Progress in Aerospace Sciences, 2018, 100: 1–17.

[17]

Archinal, B. A., A'Hearn, M. F., Bowell, E., Conrad, A., Consolmagno, G. J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J. L., Krasinsky, G. A., et al. Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celestial Mechanics and Dynamical Astronomy, 2011, 109(2): 101–135.

[18]

Werner, R. A. Spherical harmonic coefficients for the potential of a constant-density polyhedron. Computers & Geosciences, 1997, 23(10): 1071–1077.

[19]

Montenbruck, O., Gill, E. Satellite Orbits: Models, Methods and Applications. Berlin: Springer Science & Business Media, 2000.

[20]

Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S., Kuchynka, P. The planetary and lunar ephemerides DE430 and DE431. Interplanetary Network Progress Report, 2014, 196(1): 42–196.

[21]
Information on https://ssd.jpl.nasa.gov/sb/elemtables.html (cited 15 July 2022)
[22]

Gaskell, R. W. Gaskell Eros Shape Model V1.0. NEAR-A-MSI-5-EROSSHAPE-V1.0. NASA Planetary Data System, 2008.

[23]
Burrows, R. R. The classical "sphere-of-influence". Technical Report, No. NASA-TM-X-53485, 1966. Information on https://ntrs.nasa.gov/citations/19660025930
[24]

Yu, Y. Research on orbital dynamics in the gravitational field of small bodies. Ph. D. Dissertation. Beijing: Tsinghua University, 2014. (in Chinese)

[25]
Owen, W. M. Jr. NEAR optical navigation at Eros. In: Proceedings of the AAS/AIAA Astrodynamics Conference, 2001, 109: 1075–1087.
[26]

Anzai, Y., Yairi, T., Takeishi, N., Tsuda, Y., Ogawa, N. Visual localization for asteroid touchdown operation based on local image features. Astrodynamics, 2020, 4(2): 149–161.

[27]

Ogawa, N., Terui, F., Mimasu, Y., Yoshikawa, K., Ono, G., Yasuda, S., Matsushima, K., Masuda, T., Hihara, H., Sano, J., et al. Image-based autonomous navigation of Hayabusa2 using artificial landmarks: The design and brief in-flight results of the first landing on asteroid Ryugu. Astrodynamics, 2020, 4(2): 89–103.

[28]
Winkler, T., Kaplinger, B. D., Wie, B. Optical navigation and fuel-efficient orbit control around an irregular-shaped asteroid. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Boston, Massachusetts, USA, 2013: AIAA 2013-5117.
[29]

Bhaskaran, S., Nandi, S., Broschart, S., Wallace, M., Cangahuala, L. A., Olson, C. Small body landings using autonomous onboard optical navigation. The Journal of the Astronautical Sciences, 2011, 58(3): 409–427.

[30]

Hu, R., Huang, X., Xu, C. Visual navigation with fast landmark selection based on error analysis for asteroid descent stage. Advances in Space Research, 2021, 68(9): 3765–3780.

[31]
Jia, H., Zhu, S. Y., Cui, P. Y. Autonomous navigation for small body landing using optical and inter-spacecraft measurements. In: Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, Montana, USA, 2020: 1–9.
[32]
Bishop, G., Welch, G. An introduction to the Kalman filter. In: Proceedings of the SIGGRAPH 2001, Course 8, 2001.
[33]
Ramachandra, K. V. Kalman filter. In: Kalman Filtering Techniques for Radar Tracking. Boca Raton, Florida, USA: CRC Press, 2018: 1–7.
[34]

Taylor, J. The Cramér–Rao estimation error lower bound computation for deterministic nonlinear systems. IEEE Transactions on Automatic Control, 1979, 24(2): 343–344.

[35]

Williams, B. G. Technical challenges and results for navigation of NEAR Shoemaker. Johns Hopkins APL Technical Digest, 2002, 23(1): 34–45.

[36]
Geeraert, J. L. Multi-satellite orbit determination using interferometric observables with RF localization applications. Ph. D. Dissertation. Boulder, Colorado, USA: University of Colorado at Boulder, 2017.
[37]

Kaplan, E. D., Hegarty, C. J. Understanding GPS: Principles and Applications, 2nd edn. Norwood, Massachusetts, USA: Artech House, 2005.

Astrodynamics
Pages 375-400
Cite this article:
Yin W, Shi Y, Shu L, et al. Autonomous navigation of an asteroid orbiter enhanced by a beacon satellite in a high-altitude orbit. Astrodynamics, 2024, 8(3): 375-400. https://doi.org/10.1007/s42064-023-0172-6

162

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 30 April 2023
Accepted: 28 June 2023
Published: 01 February 2024
© Tsinghua University Press 2023
Return