The limited space around the Earth is getting cluttered with leftover fragments from old missions, creating a real challenge. As more satellites are launched, even debris pieces as small as 5 mm must be tracked to avoid collisions. However, it is an arduous and challenging task in space. This paper presents a technical exploration of ground-based and in-orbit space debris tracking and orbit determination methods. It highlights the challenges faced during on-ground and in-orbit demonstrations, identifies current gaps, and proposes solutions following technological advancements, such as low-power pose estimation methods. Owing to the numerous atmospheric barriers to ground-based sensors, this study emphasizes the significance of spaceborne sensors for precise orbit determination, complemented by advanced data processing algorithms and collaborative efforts. The ultimate goal is to create a comprehensive catalog of resident space objects (RSO) around the Earth and promote space environment sustainability. By exploring different methods and finding innovative solutions, this study contributes to the protection of space for future exploration and the creation of a more transparent and precise map of orbital objects.
William, A. Protecting the LEO environment. The Journal of Space Safety Engineering, 2022, 9(3): 449–454.
Blake, J., Chote, P., Pollacco, D., Feline, W., Privett, G., Ash, A., Eves, S., Greenwood, A., Harwood, N., Marsh, T., et al. DebrisWatch Ⅰ: A survey of faint geosynchronous debris. Advances in Space Research, 2021, 67(1): 360–370.
Muntoni, G., Montisci, G., Pisanu, T., Andronico, P., Valente, G. Crowded space: A review on radar measurements for space debris monitoring and tracking. Applied Sciences, 2021, 11(4): 1364.
Muntoni, G., Schirru, L., Pisanu, T., Montisci, G., Valente, G., Gaudiomonte, F., Serra, G., Urru, E., Ortu, P., Fanti, A. Space debris detection in low Earth orbit with the Sardinia radio telescope. Electronics, 2017, 6(3): 59.
Sato, T., Wakayama, T., Tanaka, T., Ikeda, K. I., Kimura, I. Shape of space debris as estimated from radar cross section variations. Journal of Spacecraft and Rockets, 1994, 31: 665–670.
Afanasev, A., Biktimirov, S. CubeSat formation architecture for small space debris surveillance and orbit determination. Information and Control Systems, 2021, 4: 37–46.
Bonnal, C., Francillout, L., Moury, M., Aniakou, U., Perez, J. D., Mariez, J., Michel, S. CNES technical considerations on space traffic management. Acta Astronautica, 2020, 167: 296–301.
Hyland, D. C. Algorithm for determination of image domain constraints for intensity correlation imaging. Applied Optics, 2022, 61(35): 10425–10432.
Hyland, D. C. Improved integration time estimates for intensity correlation imaging. Applied Optics, 2022, 61(33): 10002–10011.
Kisantal, M., Sharma, S., Park, T. H., Izzo, D., Märtens, M., D’Amico, S. Satellite pose estimation challenge: Dataset, competition design and results. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4083–4098.
Molotov, I., Zakhvatkin, M., Elenin, L., Canals Ros, L., Graziani, F., Teofilatto, P., Schildknecht, T., Ehgamberdiev, S., Aliev, A., Ivashchenko, Y., et al. ISON network tracking of space debris: Current status and achievements. RMxAA (Serie de Conferencias), 2019, 51: 144–149.
Pradhan, B., Hickson, P., Surdej, J. Serendipitous detection and size estimation of space debris using a survey zenith-pointing telescope. Acta Astronautica, 2019, 164: 77–83.
Sharma, S., Damico, S. Neural network-based pose estimation for noncooperative spacecraft rendezvous. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4638–4658.
Gaposchkin, E. M., von Braun, C., Sharma, J. Space-based space surveillance with the space-based visible. Journal of Guidance, Control, and Dynamics, 2000, 23(1): 148–152.
Sharma, J. Space-based visible space surveillance performance. Journal of Guidance, Control, and Dynamics, 2000, 23(1): 153–158.
Flohrer, T., Krag, H., Klinkrad, H., Schildknecht, T. Feasibility of performing space surveillance tasks with a proposed space-based optical architecture. Advances in Space Research, 2011, 47(6): 1029–1042.
Flohrer, T., Schildknecht, T., Musci, R. Proposed strategies for optical observations in a future European Space Surveillance network. Advances in Space Research, 2008, 41(7): 1010–1021.
Gruntman, M. Passive optical detection of submillimeter and millimeter size space debris in low Earth orbit. Acta Astronautica, 2014, 105(1): 156–170.
Underwood, C., Pellegrino, S., Lappas, V. J., Bridges, C. P., Baker, J. Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST). Acta Astronautica, 2015, 114: 112–122.
Simms, L. M. Space-based telescopes for actionable refinement of ephemeris pathfinder mission. Optical Engineering, 2012, 51(1): 011004.
Donath, T., Schildknecht, T., Martinot, V., Del Monte, L. Possible European systems for space situational awareness. Acta Astronautica, 2010, 66(9–10): 1378–1387.
Felicetti, L., Emami, M. R. A multi-spacecraft formation approach to space debris surveillance. Acta Astronautica, 2016, 127: 491–504.
Cowardin, H. M., Hostetler, J. M., Murray, J. I., Reyes, J. A., Cruz, C. L. Optical characterization of DebriSat fragments in support of orbital debris environmental models. The Journal of the Astronautical Sciences, 2021, 68(4): 1186–1205.
Persico, A. R., Kirkland, P., Clemente, C., Soraghan, J. J., Vasile, M. CubeSat-based passive bistatic radar for space situational awareness: A feasibility study. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 476–485.
Pasqualetto Cassinis, L., Fonod, R., Gill, E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft. Progress in Aerospace Sciences, 2019, 110: 100548.
Davis, J., Pernicka, H. Proximity operations about and identification of non-cooperative resident space objects using stereo imaging. Acta Astronautica, 2019, 155: 418–425.
Pesce, V., Lavagna, M., Bevilacqua, R. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects. Advances in Space Research, 2017, 59(1): 236–251.
Opromolla, R., Fasano, G., Rufino, G., Grassi, M. Uncooperative pose estimation with a LIDAR-based system. Acta Astronautica, 2015, 110: 287–297.
Segal, S., Gurfil, P., Shahid, K. In-orbit tracking of resident space objects: A comparison of monocular and stereoscopic vision. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 676–688.
Sharma, S., Ventura, J., D’Amico, S. Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous. Journal of Spacecraft and Rockets, 2018, 55(6): 1414–1429.
Opromolla, R., Fasano, G., Rufino, G., Grassi, M. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Progress in Aerospace Sciences, 2017, 93: 53–72.
Song, J. Z., Cao, C. X. Pose self-measurement of noncooperative spacecraft based on solar panel triangle structure. Journal of Robotics, 2015, 2015: 472461.
Oumer, N. W., Kriegel, S., Ali, H., Reinartz, P. Appearance learning for 3D pose detection of a satellite at close-range. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 1–15.
Dong, G. Q., Zhu, Z. H. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo. Acta Astronautica, 2016, 122: 209–218.
He, Y., Liang, B., He, J., Li, S. Z. Non-cooperative spacecraft pose tracking based on point cloud feature. Acta Astronautica, 2017, 139: 213–221.
Shahid, K., Okouneva, G. Intelligent LIDAR scanning region selection for satellite pose estimation. Computer Vision and Image Understanding, 2007, 107(3): 203–209.
Woods, J. O., Christian, J. A. Lidar-based relative navigation with respect to non-cooperative objects. Acta Astronautica, 2016, 126: 298–311.
Pesce, V., Lavagna, M., Bevilacqua, R. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects. Advances in Space Research, 2017, 59(1): 236–251.
D’Amico, S., Benn, M., Jòrgensen, J. L. Pose estimation of an uncooperative spacecraft from actual space imagery. International Journal of Space Science and Engineering, 2014, 2(2): 171.
Eun, Y., Park, S. Y., Kim, G. N. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity. Acta Astronautica, 2018, 147: 48–58.
Zhao, G. Y., Liu, L., Li, B., Li, Z. W., Sang, J. Z. An orbit determination approach to associating optical tracklets of space objects. Acta Astronautica, 2022, 200: 506–523.
Tommei, G., Milani, A., Rossi, A. Orbit determination of space debris: Admissible regions. Celestial Mechanics and Dynamical Astronomy, 2007, 97(4): 289–304.
Liu, M. Y., Wang, H., Yi, H. W., Xue, Y. K., Wen, D. S., Wang, F., Shen, Y., Pan, Y. Space debris detection and positioning technology based on multiple star trackers. Applied Sciences, 2022, 12(7): 3593.
Ardaens, J. S., Gaias, G. Angles-only relative orbit determination in low earth orbit. Advances in Space Research, 2018, 61(11): 2740–2760.
Gooding, R. H. A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight. Celestial Mechanics and Dynamical Astronomy, 1996, 66(4): 387–423.
Lei, X. X., Li, Z. W., Du, J. L., Chen, J. Y., Sang, J. Z., Liu, C. Z. Identification of uncatalogued LEO space objects by a ground-based EO array. Advances in Space Research, 2021, 67(1): 350–359.
Milani, A., Gronchi, G. F., Vitturi, M. D. M., Knežević, Z. Orbit determination with very short arcs. I admissible regions. Celestial Mechanics and Dynamical Astronomy, 2004, 90(1): 57–85.
DeMars, K. J., Jah, M. K. Probabilistic initial orbit determination using Gaussian mixture models. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1324–1335.
Hussein, I. I., Roscoe, C. W. T., Mercurio, M., Wilkins, M. P., Schumacher, P. W. Jr. Probabilistic admissible region for multihypothesis filter initialization. Journal of Guidance, Control, and Dynamics, 2018, 41(3): 710–724.
Ansalone, L., Curti, F. A genetic algorithm for Initial Orbit Determination from a too short arc optical observation. Advances in Space Research, 2013, 52(3): 477–489.
Huang, J., Lei, X. X., Zhao, G. Y., Liu, L., Li, Z. W., Luo, H., Sang, J. Z. Short-arc association and orbit determination for new GEO objects with space-based optical surveillance. Aerospace, 2021, 8(10): 298.
Li, J., An, W., Zhou, Y. Y. Initial orbit determination and correlation of the uncatalogued targets with too short arcs in space-based optical surveillance. Aerospace Science and Technology, 2012, 21(1): 41–46.
Fujimoto, K., Scheeres, D. J. Applications of the admissible region to space-based observations. Advances in Space Research, 2013, 52(4): 696–704.
Fujimoto, K., Scheeres, D. J., Herzog, J., Schildknecht, T. Association of optical tracklets from a geosynchronous belt survey via the direct Bayesian admissible region approach. Advances in Space Research, 2014, 53(2): 295–308.
Siminski, J. A., Montenbruck, O., Fiedler, H., Schildknecht, T. Short-arc tracklet association for geostationary objects. Advances in Space Research, 2014, 53(8): 1184–1194.
Cai, H., Yang, Y., Gehly, S., Wu, S. Q., Zhang, K. F. Improved tracklet association for space objects using short-arc optical measurements. Acta Astronautica, 2018, 151: 836–847.
Lei, X. X., Wang, K. P., Zhang, P., Pan, T., Li, H. F., Sang, J. Z., He, D. L. A geometrical approach to association of space-based very short-arc LEO tracks. Advances in Space Research, 2018, 62(3): 542–553.
Sabol, C., Hill, K., Alfriend, K., Sukut, T. Nonlinear effects in the correlation of tracks and covariance propagation. Acta Astronautica, 2013, 84: 69–80.
Du, J. L., Chen, J. Y., Li, B., Sang, J. Z. Tentative design of SBSS constellations for LEO debris catalog maintenance. Acta Astronautica, 2019, 155: 379–388.
Du, J. L., Lei, X. X., Sang, J. Z. A space surveillance satellite for cataloging high-altitude small debris. Acta Astronautica, 2019, 157: 268–275.
Liu, L., Li, B., Chen, J. Y., Lei, X. X., Zhao, G. Y., Sang, J. Z. Applying Lambert problem to association of radar-measured orbit tracks of space objects. Research in Astronomy and Astrophysics, 2021, 21(12): 301.
Dumitrescu, F., Ceachi, B., Truică, C. O., Trăscău, M., Florea, A. M. A novel deep learning-based relabeling architecture for space objects detection from partially annotated astronomical images. Aerospace, 2022, 9(9): 520.
Wu, D., Rosengren, A. J. An investigation on space debris of unknown origin using proper elements and neural networks. Celestial Mechanics and Dynamical Astronomy, 2023, 135(4): 44.
Clohessy, W. H., Wiltshire, R. S. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences, 1960, 27(9): 653–658.
English, C., Okouneva, G., Saint-Cyr, P., Choudhuri, A., Luu, T. Real-time dynamic pose estimation systems in space: Lessons learned for system design and performance evaluation. International Journal of Intelligent Control and Systems, 2011, 16(2): 79–96.
Ma, Y., Ma, C., Xie, Y. H., Wang, F. Space target luminosity measurement based on video remote sensing satellites. Acta Photonica Sinica, 2019, 48(12): 1228002.
Guo, C. B., Xia, X. W., Si, C. M., Liu, P. L., Du, Y. A survey of relative position and attitude measurement for formation flying satellite. Aerospace Control, 2018, 36(6): 83–89. (in Chinese)
Gong, B. C., Ma, Y. Q., Zhang, W. F., Li, S., Li, X. Q. Deep-neural-network-based angles-only relative orbit determination for space non-cooperative target. Acta Astronautica, 2023, 204: 552–567.