AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Spaceborne and ground-based sensor collaboration: Advancing resident space objects’ orbit determination for space sustainability

Niki Sajjad1,2( )Mehran Mirshams1Andreas Makoto Hein2
Space Research Laboratory, Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran 16569-83911, Iran
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg 1855, Luxembourg
Show Author Information

Graphical Abstract

Abstract

The limited space around the Earth is getting cluttered with leftover fragments from old missions, creating a real challenge. As more satellites are launched, even debris pieces as small as 5 mm must be tracked to avoid collisions. However, it is an arduous and challenging task in space. This paper presents a technical exploration of ground-based and in-orbit space debris tracking and orbit determination methods. It highlights the challenges faced during on-ground and in-orbit demonstrations, identifies current gaps, and proposes solutions following technological advancements, such as low-power pose estimation methods. Owing to the numerous atmospheric barriers to ground-based sensors, this study emphasizes the significance of spaceborne sensors for precise orbit determination, complemented by advanced data processing algorithms and collaborative efforts. The ultimate goal is to create a comprehensive catalog of resident space objects (RSO) around the Earth and promote space environment sustainability. By exploring different methods and finding innovative solutions, this study contributes to the protection of space for future exploration and the creation of a more transparent and precise map of orbital objects.

References

[1]
ESA ESOC. ESA’s annual space environment report. 2023. Available at https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
[2]
Information on https://orbit.ing-now.com (cited 23 July 2023)
[3]

William, A. Protecting the LEO environment. The Journal of Space Safety Engineering, 2022, 9(3): 449–454.

[4]
ESA. ESA & UNOOSA space debris infographics and podcast. 2021. Available at https://www.esa.int/Space_Safety/Space_Debris/ESA_UNOOSA_space_debris_infographics_and_podcast
[5]
ESA. Distribution of space debris in orbit around Earth, 2019. Available at https://www.esa.int/ESA_Multimedia/Videos/2019/02/Distribution_of_space_debris_in_orbit_around_Earth
[6]
IADC Steering Group and Working Group 4. IADC space debris mitigation guidelines. 2020. Available at https://orbitaldebris.jsc.nasa.gov/library/iadc-space-debris-guidelines-revision-2.pdf
[7]
Information on https://aerospace.org/cords (cited 25 July 2023)
[8]

Blake, J., Chote, P., Pollacco, D., Feline, W., Privett, G., Ash, A., Eves, S., Greenwood, A., Harwood, N., Marsh, T., et al. DebrisWatch Ⅰ: A survey of faint geosynchronous debris. Advances in Space Research, 2021, 67(1): 360–370.

[9]
Klinkrad, H. Space Debris: Models and Risk Analysis (Springer Praxis Books). Springer, 2006.
[10]

Muntoni, G., Montisci, G., Pisanu, T., Andronico, P., Valente, G. Crowded space: A review on radar measurements for space debris monitoring and tracking. Applied Sciences, 2021, 11(4): 1364.

[11]

Muntoni, G., Schirru, L., Pisanu, T., Montisci, G., Valente, G., Gaudiomonte, F., Serra, G., Urru, E., Ortu, P., Fanti, A. Space debris detection in low Earth orbit with the Sardinia radio telescope. Electronics, 2017, 6(3): 59.

[12]

Sato, T., Wakayama, T., Tanaka, T., Ikeda, K. I., Kimura, I. Shape of space debris as estimated from radar cross section variations. Journal of Spacecraft and Rockets, 1994, 31: 665–670.

[13]

Afanasev, A., Biktimirov, S. CubeSat formation architecture for small space debris surveillance and orbit determination. Information and Control Systems, 2021, 4: 37–46.

[14]

Bonnal, C., Francillout, L., Moury, M., Aniakou, U., Perez, J. D., Mariez, J., Michel, S. CNES technical considerations on space traffic management. Acta Astronautica, 2020, 167: 296–301.

[15]
Accès ONERA. GRAVES, the 1st European space surveillance system. 2019. Available at https://www.onera.fr/en/news/graves-the-1st-european-space-surveillance-system
[16]

Hyland, D. C. Algorithm for determination of image domain constraints for intensity correlation imaging. Applied Optics, 2022, 61(35): 10425–10432.

[17]

Hyland, D. C. Improved integration time estimates for intensity correlation imaging. Applied Optics, 2022, 61(33): 10002–10011.

[18]
Creed, L., Graham, J., Jenkins, C., Riofrio, S. D., Wilson, A. R., Vasile, M. STRATHcube: The design of a CubeSat for space debris detection using in-orbit passive bistatic radar. In: Proceedings of the 72nd International Astronautical Congress, 2021: IAC-21, A6, 1, 2, x66530.
[19]
Li, X., Gao, X., Lu, C., Tang, J. Analysis and simulation of intensity correlation imaging noise towards high-orbit satellite. In: Proceedings of the 27th Conference of Spacecraft TT&C Technology in China, 2015: 429–437.
[20]

Kisantal, M., Sharma, S., Park, T. H., Izzo, D., Märtens, M., D’Amico, S. Satellite pose estimation challenge: Dataset, competition design and results. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4083–4098.

[21]

Molotov, I., Zakhvatkin, M., Elenin, L., Canals Ros, L., Graziani, F., Teofilatto, P., Schildknecht, T., Ehgamberdiev, S., Aliev, A., Ivashchenko, Y., et al. ISON network tracking of space debris: Current status and achievements. RMxAA (Serie de Conferencias), 2019, 51: 144–149.

[22]
Griffith, N., Lu, E., Nicolls, M., Park, I., Rosner, C. Commercial space tracking services for small satellites. In: Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, 2019: SSC19-WKVI-03.
[23]

Pradhan, B., Hickson, P., Surdej, J. Serendipitous detection and size estimation of space debris using a survey zenith-pointing telescope. Acta Astronautica, 2019, 164: 77–83.

[24]

Sharma, S., Damico, S. Neural network-based pose estimation for noncooperative spacecraft rendezvous. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4638–4658.

[25]
McGlynn, D. Space mapping. Berkeley Engineer, 2018. Available at https://engineering.berkeley.edu/news/2018/06/space-mapping/
[26]
Michal, T., Eglizeaud, J. P., Bouchard, J. GRAVES: The new French system for space surveillance. In: Proceedings of the 4th European Conference on Space Debris, 2005.
[27]
Ventura, J. Autonomous proximity operations for noncooperative space target. Ph.D. Thesis. Technischen Universität München, 2016.
[28]
Agapov, V., Lapshin, A. Survey and follow-up strategies used in operation of ASPOS OKP to gather observation data on GEO, HEO and MEO objects. In: Proceedings of the 1st NEO and Debris Detection Conference, 2019.
[29]

Gaposchkin, E. M., von Braun, C., Sharma, J. Space-based space surveillance with the space-based visible. Journal of Guidance, Control, and Dynamics, 2000, 23(1): 148–152.

[30]

Sharma, J. Space-based visible space surveillance performance. Journal of Guidance, Control, and Dynamics, 2000, 23(1): 153–158.

[31]
Maskell, P., Oram, P. Sapphire: Canada’s answer to space-based surveillance of orbital objects. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2008.
[32]

Flohrer, T., Krag, H., Klinkrad, H., Schildknecht, T. Feasibility of performing space surveillance tasks with a proposed space-based optical architecture. Advances in Space Research, 2011, 47(6): 1029–1042.

[33]

Flohrer, T., Schildknecht, T., Musci, R. Proposed strategies for optical observations in a future European Space Surveillance network. Advances in Space Research, 2008, 41(7): 1010–1021.

[34]
Vanwijck, X., Flohrer, T. Possible contribution of space-based assets for space situational awareness. In: Proceedings of the 59th International Astronautical Congress, 2008: 2466–2472.
[35]
Carl, J. R., Arndt, G. D., Bourgoise, B. A., Paz, I. Space-borne radar detection of orbital debris. In: Proceedings of the IEEE Global Telecommunications Conference, 1993: 939–943.
[36]
Cao, X. H., Su, F. L., Sun, H. D., Xu, G. D. Space debris observation via space-based ISAR imaging. In: Proceedings of the International Conference on Microwave and Millimeter Wave Technology, 2007.
[37]
Cerutti-Maori, D., Rosebrock, J., Maouloud, I. O., Leushacke, L., Krag, H. Preliminary concept of a space-based radar for detecting MM-size space debris. In: Proceedings of the 7th European Conference on Space Debris, 2017.
[38]
Utzmann, J., Wagner, A., Silha, J., Schildknecht, T., Willemsen, P., Teston, F., Flohrer, T. Space-based space surveillance and tracking demonstrator: Mission and system design. In: Proceedings of the 65th International Astronautical Congress, 2014.
[39]
Middleton, K., Dowell, A., Edeson, R., Escorial-Olmos, D., Fok, S., Morris, N., Naudet, J., Waltham, N. A telescope payload for optical detection of space debris from low-Earth-orbit. In: Proceedings of the 65th International Astronautical Congress, 2014.
[40]

Gruntman, M. Passive optical detection of submillimeter and millimeter size space debris in low Earth orbit. Acta Astronautica, 2014, 105(1): 156–170.

[41]

Underwood, C., Pellegrino, S., Lappas, V. J., Bridges, C. P., Baker, J. Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST). Acta Astronautica, 2015, 114: 112–122.

[42]

Simms, L. M. Space-based telescopes for actionable refinement of ephemeris pathfinder mission. Optical Engineering, 2012, 51(1): 011004.

[43]

Donath, T., Schildknecht, T., Martinot, V., Del Monte, L. Possible European systems for space situational awareness. Acta Astronautica, 2010, 66(9–10): 1378–1387.

[44]

Felicetti, L., Emami, M. R. A multi-spacecraft formation approach to space debris surveillance. Acta Astronautica, 2016, 127: 491–504.

[45]

Cowardin, H. M., Hostetler, J. M., Murray, J. I., Reyes, J. A., Cruz, C. L. Optical characterization of DebriSat fragments in support of orbital debris environmental models. The Journal of the Astronautical Sciences, 2021, 68(4): 1186–1205.

[46]
Ender, J., Leushacke, L., Brenner, A., Wilden, H. Radar techniques for space situational awareness. In: Proceedings of the 12th International Radar Symposium, 2011: 21–26.
[47]

Persico, A. R., Kirkland, P., Clemente, C., Soraghan, J. J., Vasile, M. CubeSat-based passive bistatic radar for space situational awareness: A feasibility study. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 476–485.

[48]

Pasqualetto Cassinis, L., Fonod, R., Gill, E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft. Progress in Aerospace Sciences, 2019, 110: 100548.

[49]

Davis, J., Pernicka, H. Proximity operations about and identification of non-cooperative resident space objects using stereo imaging. Acta Astronautica, 2019, 155: 418–425.

[50]

Pesce, V., Lavagna, M., Bevilacqua, R. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects. Advances in Space Research, 2017, 59(1): 236–251.

[51]

Opromolla, R., Fasano, G., Rufino, G., Grassi, M. Uncooperative pose estimation with a LIDAR-based system. Acta Astronautica, 2015, 110: 287–297.

[52]

Segal, S., Gurfil, P., Shahid, K. In-orbit tracking of resident space objects: A comparison of monocular and stereoscopic vision. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 676–688.

[53]

Sharma, S., Ventura, J., D’Amico, S. Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous. Journal of Spacecraft and Rockets, 2018, 55(6): 1414–1429.

[54]

Opromolla, R., Fasano, G., Rufino, G., Grassi, M. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Progress in Aerospace Sciences, 2017, 93: 53–72.

[55]
Malan, D. F. 3D tracking between satellites using monocular computer vision. Master Thesis. University of Stellenbosch, 2005.
[56]

Song, J. Z., Cao, C. X. Pose self-measurement of noncooperative spacecraft based on solar panel triangle structure. Journal of Robotics, 2015, 2015: 472461.

[57]

Oumer, N. W., Kriegel, S., Ali, H., Reinartz, P. Appearance learning for 3D pose detection of a satellite at close-range. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 1–15.

[58]

Dong, G. Q., Zhu, Z. H. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo. Acta Astronautica, 2016, 122: 209–218.

[59]
Lichter, M. D., Dubowsky, S. State, shape, and parameter estimation of space objects from range images. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2004: 2974–2979.
[60]

He, Y., Liang, B., He, J., Li, S. Z. Non-cooperative spacecraft pose tracking based on point cloud feature. Acta Astronautica, 2017, 139: 213–221.

[61]

Shahid, K., Okouneva, G. Intelligent LIDAR scanning region selection for satellite pose estimation. Computer Vision and Image Understanding, 2007, 107(3): 203–209.

[62]

Woods, J. O., Christian, J. A. Lidar-based relative navigation with respect to non-cooperative objects. Acta Astronautica, 2016, 126: 298–311.

[63]

Pesce, V., Lavagna, M., Bevilacqua, R. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects. Advances in Space Research, 2017, 59(1): 236–251.

[64]

D’Amico, S., Benn, M., Jòrgensen, J. L. Pose estimation of an uncooperative spacecraft from actual space imagery. International Journal of Space Science and Engineering, 2014, 2(2): 171.

[65]
Sharma, S., Beierle, C., D’Amico, S. Pose estimation for non-cooperative spacecraft rendezvous using convolutional neural networks. In: Proceedings of the IEEE Aerospace Conference, 2018.
[66]

Eun, Y., Park, S. Y., Kim, G. N. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity. Acta Astronautica, 2018, 147: 48–58.

[67]
Trentlage, C., Yang, J., Ben Larbi, M. K., de Alba Padilla, C. A., Stoll, E. The ELISSA laboratory: Free-floating satellites for space-related research. In: Proceedings of the Deutscher Luft- und Raumfahrtkongress, 2018.
[68]
[69]
Somma, G. L., Bowman, P., Dayas, M., Walker, S., Reid, S., Brunskill, C. Reusing existing space infrastructure to identify and monitor resident space objects. In: Proceedings of the 8th European Conference on Space Debris, 2021.
[70]

Zhao, G. Y., Liu, L., Li, B., Li, Z. W., Sang, J. Z. An orbit determination approach to associating optical tracklets of space objects. Acta Astronautica, 2022, 200: 506–523.

[71]

Tommei, G., Milani, A., Rossi, A. Orbit determination of space debris: Admissible regions. Celestial Mechanics and Dynamical Astronomy, 2007, 97(4): 289–304.

[72]
Vallado, D. A., Griesbach, J. D. Simulating space surveillance networks. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2011: AAS 11-580
[73]

Liu, M. Y., Wang, H., Yi, H. W., Xue, Y. K., Wen, D. S., Wang, F., Shen, Y., Pan, Y. Space debris detection and positioning technology based on multiple star trackers. Applied Sciences, 2022, 12(7): 3593.

[74]
Feiteirinha, J. L. F., Kairiss, V., Reggestad, V., Flohrer, T., Maleville, L., Siminski, J., Maestroni, E. STR4SD - Exploring the concept of opportunistically using star-trackers for space debris observations. In: Proceedings of the 1st NEO and Debris Detection Conference, 2019.
[75]
ESA. Space debris projects and core activities. Available at https://www.esa.int/Space_Safety/Space_Debris_Projects_and_Core_Activities
[76]
Gaias, G., Ardaens, J.-S., Schultz, C. The AVANTI experiment: Flight results. In: Proceedings of the 10th International ESA Conference on Guidance, Navigation & Control Systems, 2017.
[77]

Ardaens, J. S., Gaias, G. Angles-only relative orbit determination in low earth orbit. Advances in Space Research, 2018, 61(11): 2740–2760.

[78]
Vallado, D. A., Cefola. P. Two-line element sets – Practice and use. In: Proceedings of the 63rd International Astronautical Congress, 2012: IAC-12.C1.6.12.
[79]
Vallado, D., Virgili, B. B., Flohrer, T. Improved SSA through orbit determination of two-line element sets. In: Proceedings of the 6th European Conference on Space Debris, 2013.
[80]
Curtis, H. D. Orbital Mechanics for Engineering Students, 3rd edn. Butterworth-Heinemann, 2013.
[81]
Bate, R. R., Mueller, D. D., White, J. E., Saylor, W. W. Fundamentals of Astrodynamics, 2nd edn. Dover Publications, 2020.
[82]
Gooding, R. A new procedure for orbit determination based on three lines of sight (angles only). Technical Report. Defence Research Agency Farnborough (United Kingdom), 1993.
[83]

Gooding, R. H. A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight. Celestial Mechanics and Dynamical Astronomy, 1996, 66(4): 387–423.

[84]
Miller, C. A., Frueh, C. A comprehensive comparison among classical and Gooding methods of initial orbit determination in optimized electro-optical sensor networks. In: Proceedings of the 8th European Conference on Space Debris, 2021.
[85]
Escobal, R. P. Methods of Orbit Determination. New York: Wiley, 1965.
[86]

Lei, X. X., Li, Z. W., Du, J. L., Chen, J. Y., Sang, J. Z., Liu, C. Z. Identification of uncatalogued LEO space objects by a ground-based EO array. Advances in Space Research, 2021, 67(1): 350–359.

[87]

Milani, A., Gronchi, G. F., Vitturi, M. D. M., Knežević, Z. Orbit determination with very short arcs. I admissible regions. Celestial Mechanics and Dynamical Astronomy, 2004, 90(1): 57–85.

[88]

DeMars, K. J., Jah, M. K. Probabilistic initial orbit determination using Gaussian mixture models. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1324–1335.

[89]

Hussein, I. I., Roscoe, C. W. T., Mercurio, M., Wilkins, M. P., Schumacher, P. W. Jr. Probabilistic admissible region for multihypothesis filter initialization. Journal of Guidance, Control, and Dynamics, 2018, 41(3): 710–724.

[90]

Ansalone, L., Curti, F. A genetic algorithm for Initial Orbit Determination from a too short arc optical observation. Advances in Space Research, 2013, 52(3): 477–489.

[91]
Sang, J., Lei, X., Zhang, P., Pan, T., Li, H. Orbital solutions to LEO-to-LEO angles-only very-short-arc tracks. In: Proceedings of the 7th European Conference on Space Debris, 2017.
[92]

Huang, J., Lei, X. X., Zhao, G. Y., Liu, L., Li, Z. W., Luo, H., Sang, J. Z. Short-arc association and orbit determination for new GEO objects with space-based optical surveillance. Aerospace, 2021, 8(10): 298.

[93]
Hill, K., Alfriend, K., Sabol, C. Covariance-based uncorrelated track association. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008: AIAA 2008-7211.
[94]

Li, J., An, W., Zhou, Y. Y. Initial orbit determination and correlation of the uncatalogued targets with too short arcs in space-based optical surveillance. Aerospace Science and Technology, 2012, 21(1): 41–46.

[95]

Fujimoto, K., Scheeres, D. J. Applications of the admissible region to space-based observations. Advances in Space Research, 2013, 52(4): 696–704.

[96]

Fujimoto, K., Scheeres, D. J., Herzog, J., Schildknecht, T. Association of optical tracklets from a geosynchronous belt survey via the direct Bayesian admissible region approach. Advances in Space Research, 2014, 53(2): 295–308.

[97]

Siminski, J. A., Montenbruck, O., Fiedler, H., Schildknecht, T. Short-arc tracklet association for geostationary objects. Advances in Space Research, 2014, 53(8): 1184–1194.

[98]

Cai, H., Yang, Y., Gehly, S., Wu, S. Q., Zhang, K. F. Improved tracklet association for space objects using short-arc optical measurements. Acta Astronautica, 2018, 151: 836–847.

[99]

Lei, X. X., Wang, K. P., Zhang, P., Pan, T., Li, H. F., Sang, J. Z., He, D. L. A geometrical approach to association of space-based very short-arc LEO tracks. Advances in Space Research, 2018, 62(3): 542–553.

[100]

Sabol, C., Hill, K., Alfriend, K., Sukut, T. Nonlinear effects in the correlation of tracks and covariance propagation. Acta Astronautica, 2013, 84: 69–80.

[101]

Du, J. L., Chen, J. Y., Li, B., Sang, J. Z. Tentative design of SBSS constellations for LEO debris catalog maintenance. Acta Astronautica, 2019, 155: 379–388.

[102]

Du, J. L., Lei, X. X., Sang, J. Z. A space surveillance satellite for cataloging high-altitude small debris. Acta Astronautica, 2019, 157: 268–275.

[103]

Liu, L., Li, B., Chen, J. Y., Lei, X. X., Zhao, G. Y., Sang, J. Z. Applying Lambert problem to association of radar-measured orbit tracks of space objects. Research in Astronomy and Astrophysics, 2021, 21(12): 301.

[104]
Information on https://www.vyoma.space/ (cited 24 July 2023)
[105]
Information on https://www.vyoma.space/constellation/ (cited 24 July 2023)
[106]
Vallado, D., Crawford, P. SGP4 orbit determination. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008: AIAA 2008-6770.
[107]

Dumitrescu, F., Ceachi, B., Truică, C. O., Trăscău, M., Florea, A. M. A novel deep learning-based relabeling architecture for space objects detection from partially annotated astronomical images. Aerospace, 2022, 9(9): 520.

[108]
Murray, J., Kennedy, T., Matney, M., Miller, R. Radar observations from the haystack ultrawideband satellite imaging radar in 2019. In: Proceedings of the 8th European Conference on Space Debris, 2021.
[110]

Wu, D., Rosengren, A. J. An investigation on space debris of unknown origin using proper elements and neural networks. Celestial Mechanics and Dynamical Astronomy, 2023, 135(4): 44.

[111]
Cropp, A. Pose estimation and relative orbit determination of a nearby target microsatellite using passive imagery. Doctoral Dissertation. University of Surrey, 2001.
[113]
Cope, E. Semi-analytic approach to rapid orbit determination for the perturbed two-body problem. Master Thesis. The Pennsylvania State University, 2023. Available at https://etda.libraries.psu.edu/files/final_submissions/28962
[114]

Clohessy, W. H., Wiltshire, R. S. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences, 1960, 27(9): 653–658.

[115]
Delpech, M., Berges, J. C., Djalal, S., Christy, J. Vision based rendezvous experiment performed during the prisma extended mission. 2012. Available at https://issfd.org/ISSFD_2012/ISSFD23_FF2_3.pdf
[116]

English, C., Okouneva, G., Saint-Cyr, P., Choudhuri, A., Luu, T. Real-time dynamic pose estimation systems in space: Lessons learned for system design and performance evaluation. International Journal of Intelligent Control and Systems, 2011, 16(2): 79–96.

[117]

Ma, Y., Ma, C., Xie, Y. H., Wang, F. Space target luminosity measurement based on video remote sensing satellites. Acta Photonica Sinica, 2019, 48(12): 1228002.

[118]

Guo, C. B., Xia, X. W., Si, C. M., Liu, P. L., Du, Y. A survey of relative position and attitude measurement for formation flying satellite. Aerospace Control, 2018, 36(6): 83–89. (in Chinese)

[119]
MIT Lincoln Lab. The annual report summarizes Lincoln laboratory. 2020. Available at https://archive.ll.mit.edu/public-ations/index.html
[120]

Gong, B. C., Ma, Y. Q., Zhang, W. F., Li, S., Li, X. Q. Deep-neural-network-based angles-only relative orbit determination for space non-cooperative target. Acta Astronautica, 2023, 204: 552–567.

Astrodynamics
Pages 325-347
Cite this article:
Sajjad N, Mirshams M, Hein AM. Spaceborne and ground-based sensor collaboration: Advancing resident space objects’ orbit determination for space sustainability. Astrodynamics, 2024, 8(3): 325-347. https://doi.org/10.1007/s42064-023-0193-1

245

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 01 August 2023
Accepted: 04 December 2023
Published: 14 March 2024
© Tsinghua University Press 2024
Return