AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Optimal orbit transfer of single-tether E-sail with inertially fixed spin axis

Department of Civil and Industrial Engineering, University of Pisa, Pisa I-56122, Italy
Show Author Information

Graphical Abstract

Abstract

This study analyzes the optimal transfer trajectory of a spacecraft propelled by a spin-stabilized electric solar wind sail (E-sail) with a single conducting tether and a spin axis with a fixed direction in an inertial (heliocentric) reference frame. The approach proposed in this study is useful for rapidly analyzing the optimal transfer trajectories of the current generation of small spacecraft designed to obtain in-situ evidence of the E-sail propulsion concept. In this context, starting with the recently proposed thrust model for a single-tether E-sail, this study discusses the optimal control law and performance in a typical two-dimensional interplanetary transfer by considering the (binary) state of the onboard electron emitter as the single control parameter. The resulting spacecraft heliocentric trajectory is a succession of Keplerian arcs alternated with propelled arcs, that is, the phases in which the electron emitter is switched on. In particular, numerical simulations demonstrated that a single-tether E-sail with an inertially fixed spin axis can perform a classical mission scenario as a circle-to-circle two-dimensional transfer by suitably varying a single control parameter.

References

[1]

Zhao, C., Huo, M. Y., Qi, J., Cao, S. L., Zhu, D. F., Sun, L. J., Sun, H. L., Qi, N. M. Coupled attitude-vibration analysis of an E-sail using absolute nodal coordinate formulation. Astrodynamics, 2020, 4(3): 249–263.

[2]

Huo, M. Y., Jin, R. H., Qi, J., Peng, N., Yang, L., Wang, T. C., Qi, N. M., Zhu, D. F. Rapid optimization of continuous trajectory for multi-target exploration propelled by electric sails. Aerospace Science and Technology, 2022, 129: 107678.

[3]

Janhunen, P. Electric sail for spacecraft propulsion. Journal of Propulsion and Power, 2004, 20(4): 763–764.

[4]

Janhunen, P., Sandroos, A. Simulation study of solar wind push on a charged wire: Basis of solar wind electric sail propulsion. Annales Geophysicae, 2007, 25(3): 755–767.

[5]

Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E., Seppänen, H., Kurppa, R., Ukkonen, J., Kiprich, S., et al. Electric solar wind sail: Toward test missions. Review of Scientific Instruments, 2010, 81(11): 111301.

[6]

Janhunen, P., Quarta, A. A., Mengali, G. Electric solar wind sail mass budget model. Geoscientific Instrumentation, Methods and Data Systems, 2013, 2(1): 85–95.

[7]
Fulton, J., Schaub, H. Dynamics and control of the flexible electrostatic sail deployment. In: Proceedings of the AAS/AIAA 26th Spaceflight Mechanics Meeting, 2016: AAS 16-499.
[8]

Li, G. Q., Zhu, Z. H., Du, C. G. Stability and control of radial deployment of electric solar wind sail. Nonlinear Dynamics, 2021, 103(1): 481–501.

[9]
Sakamoto, H., Mughal, M. R., Slavinskis, A., Praks, J., Toivanen, P., Janhunen, P., Palmroth, M., Kilpua, E., Vainio, R. Verification of tether deployment system aboard CubeSat through dynamics simulations and tests. In: Proceedings of the IEEE Aerospace Conference, 2021: 1–7.
[10]

Bassetto, M., Niccolai, L., Quarta, A. A., Mengali, G. A comprehensive review of Electric Solar Wind Sail concept and its applications. Progress in Aerospace Sciences, 2022, 128: 100768.

[11]

Lätt, S., Slavinskis, A., Ilbis, E., Kvell, U., Voormansik, K., Kulu, E., Pajusalu, M., Kuuste, H., Sünter, I., Eenmäe, T., et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proceedings of the Estonian Academy of Sciences, 2014, 63(2S): 200–209.

[12]

Slavinskis, A., Pajusalu, M., Kuuste, H., Ilbis, E., Eenmae, T., Sunter, I., Laizans, K., Ehrpais, H., Liias, P., Kulu, E., et al. ESTCube-1 in-orbit experience and lessons learned. IEEE Aerospace and Electronic Systems Magazine, 2015, 30(8): 12–22.

[13]

Dalbins, J., Allaje, K., Ehrpais, H., Iakubivskyi, I., Ilbis, E., Janhunen, P., Kivastik, J., Merisalu, M., Noorma, M., Pajusalu, M., et al. Interplanetary student nanospacecraft: Development of the LEO demonstrator ESTCube-2. Aerospace, 2023, 10(6): 503.

[14]
Iakubivskyi, I., Ehrpais, H., Dalbins, J., Oro, E., Kulu, E., Kütt, J., Janhunen, P., Slavinskis, A., Ilbis, E., Ploom, I., et al. ESTCube-2 mission analysis: Plasma brake experiment for deorbiting. In: Proceedings of the 67th International Astronautical Congress, 2016: IAC-16, E2, 4, 4, x33190.
[15]
Ofodile, I., Kutt, J., Kivastik, J., Kaspar Nigol, M., Parelo, A., Ilbis, E., Ehrpais, H., Slavinskis, A. ESTCube-2 attitude determination and control: Step towards interplanetary CubeSats. In: Proceedings of the IEEE Aerospace Conference, 2019: 1–12.
[16]
Dalbins, J., Allaje, K., Iakubivskyi, I., Kivastik, J., Komarovskis, R. O., Plans, M., Sunter, I., Teras, H., Ehrpais, H., Ilbis, E., et al. ESTCube-2: The experience of developing a highly integrated CubeSat platform. In: Proceedings of the IEEE Aerospace Conference, 2022: 1–16.
[17]

Palos, M., Janhunen, P., Toivanen, P., Tajmar, M., Iakubivskyi, I., Micciani, A., Orsini, N., Kütt, J., Rohtsalu, A., Dalbins, J., et al. Electric sail mission expeditor, ESME: Software architecture and initial ESTCube lunar cubesat E-sail experiment design. Aerospace, 2023, 10(8): 694.

[18]

Huo, M. Y., Mengali, G., Quarta, A. A. Electric sail thrust model from a geometrical perspective. Journal of Guidance, Control, and Dynamics, 2018, 41(3): 735–741.

[19]

Bassetto, M., Quarta, A. A., Mengali, G. Thrust model and guidance scheme for single-tether E-sail with constant attitude. Aerospace Science and Technology, 2023, 142: 108618

[20]

Quarta, A. A., Mengali, G. Minimum-time trajectories of electric sail with advanced thrust model. Aerospace Science and Technology, 2016, 55: 419–430.

[21]

Mengali, G., Quarta, A. A., Janhunen, P. Electric sail performance analysis. Journal of Spacecraft and Rockets, 2008, 45(1): 122–129.

[22]

Toivanen, P. K., Janhunen, P. Spin plane control and thrust vectoring of electric solar wind sail. Journal of Propulsion and Power, 2012, 29(1): 178–185.

[23]

Bassetto, M., Mengali, G., Quarta, A. A. E-sail attitude control with tether voltage modulation. Acta Astronautica, 2020, 166: 350–357.

[24]

Bryson, A. E., Ho, Y. C. Applied Optimal Control. New York, USA: Hemisphere Publishing Corporation, 1975: 71–89.

[25]

Stengel, R. F. Optimal Control and Estimation. New York, USA: Dover Publications, Inc., 1994: 222–254.

[26]

Ross, I. M. A Primer on Pontryagin's Principle in Optimal Control. San Francisco, USA: Collegiate Publishers, 2015: 127–129.

[27]

Morante, D., Sanjurjo Rivo, M., Soler, M. A survey on low-thrust trajectory optimization approaches. Aerospace, 2021, 8(3): 88.

[28]

Von Stryk, O., Bulirsch, R. Direct and indirect methods for trajectory optimization. Annals of Operations Research, 1992, 37(1–4): 357–373.

[29]

Bassetto, M., Quarta, A. A., Mengali, G. Locally-optimal electric sail transfer. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(1): 166–179.

[30]

Lawden, D. F. Optimal Trajectories for Space Navigation. London: Butterworths & Co., 1963: 54–60.

Astrodynamics
Pages 285-295
Cite this article:
Quarta AA, Bassetto M, Mengali G. Optimal orbit transfer of single-tether E-sail with inertially fixed spin axis. Astrodynamics, 2024, 8(2): 285-295. https://doi.org/10.1007/s42064-023-0194-0

297

Views

29

Downloads

2

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 17 September 2023
Accepted: 15 December 2023
Published: 13 May 2024
© The Author(s) 2024

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return