AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (32.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The OPS-SAT case: A data-centric competition for onboard satellite image classification

Gabriele Meoni1,2,3,*( )Marcus Märtens2,*Dawa Derksen2,3Kenneth See4Toby Lightheart4Anthony Sécher5Arnaud Martin5David Rijlaarsdam6Vincenzo Fanizza6Dario Izzo2
Department of Space Engineering of the Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629 HS Delft, the Netherlands
Advanced Concepts Team, European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Φ-lab, European Space Agency, Via Galileo Galilei 1, 00044, Frascati (RM), Italy
Inovor Technologies, SpaceLab Building, Lot Fourteen, Adelaide SA 5000, Australia
Capgemini Engineering - Hybrid Intelligence, 4-11 Avenue Didier Daurat, Blagnac, France
Ubotica Technologies, DCU Alpha, Old Finglas Road 11, Glasnevin, Dublin D11KXN4, Ireland

* Gabriele Meoni and Marcus Märtens contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

While novel artificial intelligence and machine learning techniques are evolving and disrupting established terrestrial technologies at an unprecedented speed, their adaptation onboard satellites is seemingly lagging. A major hindrance in this regard is the need for high-quality annotated data for training such systems, which makes the development process of machine learning solutions costly, time-consuming, and inefficient. This paper presents "the OPS-SAT case", a novel data-centric competition that seeks to address these challenges. The powerful computational capabilities of the European Space Agency’s OPS-SAT satellite are utilized to showcase the design of machine learning systems for space by using only the small amount of available labeled data, relying on the widely adopted and freely available open-source software. The generation of a suitable dataset, design and evaluation of a public data-centric competition, and results of an onboard experimental campaign by using the competition winners’ machine learning model directly on OPS-SAT are detailed. The results indicate that adoption of open standards and deployment of advanced data augmentation techniques can retrieve meaningful onboard results comparatively quickly, simplifying and expediting an otherwise prolonged development period.

References

[1]

Furano, G., Meoni, G., Dunne, A., Moloney, D., Ferlet-Cavrois, V., Tavoularis, A., Byrne, J., Buckley, L., Psarakis, M., Voss, K. O., et al. Towards the use of artificial intelligence on the edge in space systems: Challenges and opportunities. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(12): 44–56.

[2]

Giuffrida, G., Fanucci, L., Meoni, G., Batic, M., Buckley, L., Dunne, A., van Dijk, C., Esposito, M., Hefele, J., Vercruyssen, N., et al. The Φ-sat-1 mission: The first on-board deep neural network demonstrator for satellite earth observation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–14.

[3]

Mateo-Garcia, G., Veitch-Michaelis, J., Purcell, C., Longepe, N., Reid, S., Anlind, A., Bruhn, F., Parr, J., Mathieu, P. P. In-orbit demonstration of a re-trainable machine learning payload for processing optical imagery. Scientific Reports, 2023, 13(1): 10391.

[4]

Růžička, V., Vaughan, A., De Martini, D., Fulton, J., Salvatelli, V., Bridges, C., Mateo-Garcia, G., Zantedeschi, V. RaVÆn: Unsupervised change detection of extreme events using ML on-board satellites. Scientific Reports, 2022, 12(1): 16939.

[5]

Guerrisi, G., Del Frate, F., Schiavon, G. Artificial intelligence based on-board image compression for the Φ-Sat-2 mission. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 8063–8075.

[6]

Del Rosso, M. P., Sebastianelli, A., Spiller, D., Mathieu, P. P., Ullo, S. L. On-board volcanic eruption detection through CNNs and satellite multispectral imagery. Remote Sensing, 2021, 13(17): 3479.

[7]

Izzo, D., Märtens, M., Pan, B. F. A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics, 2019, 3(4): 287–299.

[8]
Galli, A., Giardina, P., Guta, M., Lossi, L., Mancina, A., Moscato, V., Patrone, F., Roseti, C., Romano, S. P., Sperlí, G., et al. AI for zero-touch management of satellite networks in B5G and 6G infrastructures. In: Proceedings of the International Workshop on Artificial Intelligence in beyond 5G and 6G Wireless Networks, 2022.
[9]

Ferreira, P. V. R., Paffenroth, R., Wyglinski, A. M., Hackett, T. M., Bilen, S. G., Reinhart, R. C., Mortensen, D. J. Reinforcement learning for satellite communications: From LEO to deep space operations. IEEE Communications Magazine, 2019, 57(5): 70–75.

[10]
Derksen, D., Meoni, G., Lecuyer, G., Mergy, A., Märtens, M., Izzo, D. Few-shot image classification challenge on-board OPS-SAT. In: Proceedings of the 35th Conference on Neural Information Processing Systems, 2021.
[11]

Sebastianelli, A., Del Rosso, M. P., Ullo, S. L. Automatic dataset builder for Machine Learning applications to satellite imagery. SoftwareX, 2021, 15: 100739.

[12]

Kikaki, K., Kakogeorgiou, I., Mikeli, P., Raitsos, D. E., Karantzalos, K. MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS One, 2022, 17(1): e0262247.

[13]

Gómez, P., Meoni, G. MSMatch: Semisupervised multispectral scene classification with few labels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11643–11654.

[14]
Richards, J. A. Remote Sensing Digital Image Analysis. Springer Cham, 2022.
[15]
Izzo, D., Meoni, G., Gómez, P., Dold, D., Zoechbauer, A. Selected trends in artificial intelligence for space applications. arXiv preprint, 2022, arXiv:2212.06662.
[16]

Kisantal, M., Sharma, S., Park, T. H., Izzo, D., Martens, M., D’Amico, S. Satellite pose estimation challenge: Dataset, competition design, and results. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4083–4098.

[17]
Park, T. H., Martens, M., Lecuyer, G., Izzo, D., D’Amico, S. SPEED+: Next-generation dataset for spacecraft pose estimation across domain gap. In: Proceedings of the IEEE Aerospace Conference, 2022: 1–15.
[18]

Märtens, M., Izzo, D., Krzic, A., Cox, D. Super-resolution of PROBA-V images using convolutional neural networks. Astrodynamics, 2019, 3(4): 387–402.

[19]
Chen, B., Liu, D. Q., Chin, T. J., Rutten, M., Derksenv, D., Martens, M., von Looz, M., Lecuyer, G., Izzo, D. Spot the GEO satellites: From dataset to Kelvins SpotGEO challenge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2021: 2086–2094.
[20]
Evans, D., Labrèche, G., Mladenov, T., Marszk, D., Zelenevskiy, V., Shiradhonkar, V. OPS-SAT LEOP and commissioning: Running a nanosatellite project in a space agency context. In: Proceedings of the 36th Annual Small Satellite Conference, 2022: SSC22-IX-06.
[21]
Abderrahmane, N., Miramond, B., Kervennic, E., Girard, A. SPLEAT: SPiking Low-power Event-based ArchiTecture for in-orbit processing of satellite imagery. In: Proceedings of the International Joint Conference on Neural Networks, 2022: 1–10.
[22]
Labrèche, G., Evans, D., Marszk, D., Mladenov, T., Shiradhonkar, V., Zelenevskiy, V. Artificial intelligence for autonomous planning and scheduling of image acquisition with the SmartCam app on-board the OPS-SAT spacecraft. In: Proceedings of the AIAA SCITECH Forum, 2022: AIAA 2022-2508.
[23]

Labrèche, G., Evans, D., Marszk, D., Mladenov, T., Shiradhonkar, V., Soto, T., Zelenevskiy, V. OPS-SAT spacecraft autonomy with TensorFlow lite, unsupervised learning, and online machine learning. In: Proceedings of the IEEE Aerospace Conference, 2022: 1–17.

[24]
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015. Software available from tensorflow.org
[25]

Park, T. H., Märtens, M., Jawaid, M., Wang, Z., Chen, B., Chin, T. J., Izzo, D., D’Amico, S. Satellite pose estimation competition 2021: Results and analyses. Acta Astronautica, 2023, 204: 640–665.

[26]

Uriot, T., Izzo, D., Simões, L. F., Abay, R., Einecke, N., Rebhan, S., Martinez-Heras, J., Letizia, F., Siminski, J., Merz, K. Spacecraft collision avoidance challenge: Design and results of a machine learning competition. Astrodynamics, 2022, 6(2): 121–140.

[27]
Derksen, D., Meoni, G., Lecuyer, G., Mergy, A., Märtens, M., Izzo, D. The OPS-SAT case dataset (1.0.0). Zenodo, 2022, https://doi.org/10.5281/zenodo.6524750
[28]
Derksen, D., Meoni, G., Lecuyer, G., Mergy, A., Märtens, M., Izzo, D. The OPS-SAT case: Test dataset (1.0.0). Zenodo, 2023, https://doi.org/10.5281/zenodo.10301862
[29]

Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., Cresson, R. Orfeo ToolBox: Open source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2017, 2(1): 15.

[30]
Tan, M. X., Le, Q. V. EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning, 2019: 6105–6114.
[31]
Liu, R. Higher accuracy on vision models with EfficientNet-Lite. 2020. Available at https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
[32]

Musial, J. P., Bojanowski, J. S. Comparison of the novel probabilistic self-optimizing vectorized earth observation retrieval classifier with common machine learning algorithms. Remote Sensing, 2022, 14(2): 378.

[33]

Deshpande, P., Belwalkar, A., Dikshit, O., Tripathi, S. Historical land cover classification from CORONA imagery using convolutional neural networks and geometric moments. International Journal of Remote Sensing, 2021, 42(13): 5144–5171.

[34]

Navarro, A., Silva, I., Catalão, J., Falcão, J. An operational Sentinel-2 based monitoring system for the management and control of direct aids to the farmers in the context of the Common Agricultural Policy (CAP): A case study in mainland Portugal. International Journal of Applied Earth Observation and Geoinformation, 2021, 103: 102469.

[35]
Sohn, K., Berthelot, D., Li, C. L., Zhang, Z. Z., Carlini, N., Cubuk, E. D., Kurakin, A., Zhang, H., Raffel, C. FixMatch: Simplifying semi-supervised learning with consistency and confidence. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 596–608.
[36]
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. PyTorch: An imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 8026–8037
[37]
European Space Agency. the opssat case starter kit. 2022. Available at https://gitlab.com/EuropeanSpaceAgency/the_opssat_case_starter_kit
[38]
Keras. 2015. Available at https://keras.io
[39]

Cheng, G., Han, J. W., Lu, X. Q. Remote sensing image scene classification: Benchmark and state of the art. Proceedings of the IEEE, 2017, 105(10): 1865–1883.

[40]

Chollet, F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800–1807.

[41]

Pitié, F., Kokaram, A. C., Dahyot, R. Automated colour grading using colour distribution transfer. Computer Vision and Image Understanding, 2007, 107(1–2): 123–137.

[42]

Papadakis, N., Provenzi, E., Caselles, V. A variational model for histogram transfer of color images. IEEE Transactions on Image Processing, 2011, 20(6): 1682–1695.

[43]
Rabin, J., Ferradans, S., Papadakis, N. Adaptive color transfer with relaxed optimal transport. In: Proceedings of the IEEE International Conference on Image Processing, 2014: 4852–4856.
[44]

Ferradans, S., Papadakis, N., Peyré, G., Aujol, J. F. Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 2014, 7(3): 1853–1882.

[45]

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A. A. Albumentations: Fast and flexible image augmentations. Information, 2020, 11(2): 125.

[46]

Lin, T. Y., Goyal, P., Girshick, R., He, K. M., Dollar, P. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327.

[47]

Yeung, M., Sala, E., Schönlieb, C. B., Rundo, L. Unified focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Computerized Medical Imaging and Graphics, 2022, 95: 102026.

[48]
Müller, R., Kornblith, S., Hinton, G. When does label smoothing help? In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 4694–4703.
[49]
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818–2826.
[50]
Barz, B., Denzler, J. Deep learning on small datasets without pre-training using cosine loss. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2020: 1360–1369.
[51]

Bradski, G. The openCV library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 2000, 25(11): 120–123.

Astrodynamics
Pages 507-528
Cite this article:
Meoni G, Märtens M, Derksen D, et al. The OPS-SAT case: A data-centric competition for onboard satellite image classification. Astrodynamics, 2024, 8(4): 507-528. https://doi.org/10.1007/s42064-023-0196-y

718

Views

25

Downloads

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 25 October 2023
Accepted: 21 December 2023
Published: 16 March 2024
© The Author(s) 2024

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return