Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Heteroclinic connections represent unique opportunities for spacecraft to transfer between isoenergetic libration point orbits for zero deterministic
Broschart, S. B., Chung, M. K. J., Hatch, S. J., Ma, J. H., Sweetser, T. H., Weinstein-Weiss, S. S., Angelopoulos, V. Preliminary trajectory design for the Artemis lunar mission. Advances in the Astronautical Sciences, 2009, 135(2): 1329–1343.
Henry, D. B., Scheeres, D. J. Quasi-periodic orbit transfer design via whisker intersection sets. Journal of Guidance, Control, and Dynamics, 2023, 46(10): 1929–1944.
Gómez, G., Llibre, J., Masdemont, J. Homoclinic and heteroclinic solutions in the restricted three-body problem. Celestial Mechanics, 1988, 44(3): 239–259.
Gómez, G., Masdemont, J. Some zero cost transfers between libration point orbits. Advances in the Astronautical Sciences, 2000, 105(2): 1199–1216.
Barcelona, M., Haro, A., Mondelo, J. M. Semianalytical computation of heteroclinic connections between center manifolds with the parameterization method. SIAM Journal on Applied Dynamical Systems, 2024, 23(1): 98–126.
Masdemont, J. J. High-order expansions of invariant manifolds of libration point orbits with applications to mission design. Dynamical Systems, 2005, 20(1): 59–113.
Delshams, A., Masdemont, J. J., Roldán, P. Computing the scattering map in the spatial Hill’s problem. Discrete and Continuous Dynamical Systems - B, 2008, 10(2–3): 455–483.
Anderson, R. L. Tour design using resonant-orbit invariant manifolds in patched circular restricted three-body problems. Journal of Guidance, Control, and Dynamics, 2021, 44(1): 106–119.
Kumar, B., Anderson, R. L., de la Llave, R. High-order resonant orbit manifold expansions for mission design in the planar circular restricted 3-body problem. Communications in Nonlinear Science and Numerical Simulation, 2021, 97: 105691.
Haapala, A. F., Howell, K. C. Representations of higher-dimensional Poincaré maps with applications to spacecraft trajectory design. Acta Astronautica, 2014, 96: 23–41.
McCarthy, B., Howell, K. Construction of heteroclinic connections between quasi-periodic orbits in the three-body problem. The Journal of the Astronautical Sciences, 2023, 70(4): 24.
De Smet, S., Scheeres, D. J. Identifying heteroclinic connections using artificial neural networks. Acta Astronautica, 2019, 161: 192–199.
Calleja, R. C., Doedel, E. J., Humphries, A. R., Lemus-Rodríguez, A., Oldeman, E. B. Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem. Celestial Mechanics and Dynamical Astronomy, 2012, 114(1): 77–106.
Shonkwiler, C., Vela-Vick, D. S. Higher-dimensional linking integrals. Proceedings of the American Mathematical Society, 2011, 139(4): 1511.
Ricca, R. L., Nipoti, B. Gauss’ linking number revisited. Journal of Knot Theory and Its Ramifications, 2011, 20(10): 1325–1343.
Olikara, Z. P.; Scheeres, D. J. Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem. Advances in the Astronautical Sciences, 2012, 145: 911–930.
Kustaanheimo, P., Schinzel, A., Davenport, H., Stiefel, E. Perturbation theory of Kepler motion based on spinor regularization. Journal für die reine und angewandte Mathematik, 1965, 1965(218): 204–219.
Stiefel, E. L., Scheifele, G. Linear and Regular Celestial Mechanics: Perturbed Two-Body Motion Numerical Methods Canonical Theory. Springer Berlin, Heidelberg, 1971.
681
Views
22
Downloads
2
Crossref
1
Web of Science
2
Scopus
0
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.