AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Minimum-time rendezvous for Sun-facing diffractive solar sails with diverse deflection angles

School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
School of Astronautics, Beihang University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

This paper investigates the heliocentric time-optimal rendezvous performance of Sun-facing diffractive solar sails with various deflection angles and acceleration capabilities. Diffractive solar sails, which generate tangential radiation pressure force, are proposed and schematically designed to achieve diverse radiation pressure distributions. The radiation pressure force model and the time-optimal control problem for these innovative Sun-facing diffractive solar sails are established. Utilizing an indirect method and the optimal control law, we explore typical heliocentric rendezvous scenarios to assess the variational trends of transfer time in relation to different deflection angles and acceleration capabilities. The results for Sun-facing diffractive sails in specific rendezvous missions are compared to reflective sails with the same area-to-mass ratio, focusing on transfer trajectory and attitude control. Our findings reveal that diffractive sails exhibit significant advantages over reflective sails, particularly in the context of normal acceleration, paving the way for more efficient space exploration.

References

[1]

Friedman, L., Gould, M. Starsailing: Solar sails and interstellar space travel. Physics Today, 1988, 41(5): 99.

[2]

Vulpetti, G., Johnson, L., Matloff, G. L. Solar Sails: A Novel Approach to Interplanetary Travel. New York: Springer New York, 2015.

[3]
Mori, O., Tsuda, Y., Sawada, H., Funase, R., Yamamoto, T., Saiki, T., Yonekura, K., Hoshino, H., Minamino, H., Endo, T., Kawaguchi, J. World’s first demonstration of solar power sailing by IKAROS. In: Proceedings of the 2nd International Symposium on Solar Sailing, 2010: 19–20.
[4]
Sawada, H., Mori, O., Okuizumi, N., Shirasawa, Y., Miyazaki, Y., Natori, M., Matunaga, S., Furuya, H., Sakamoto, H. Mission report on the solar power sail deployment demonstration of IKAROS. In: Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011: AIAA 2011-1887.
[5]
Mori, O., Shirasawa, Y., Mimasu, Y., Tsuda, Y., Sawada, H., Saiki, T., Yamamoto, T., Yonekura, K., Hoshino, H., Kawaguchi, J., et al. Overview of IKAROS mission. In: Advances in Solar Sailing. Springer Praxis Books. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 25–43.
[6]
Nehrenz, M., Diaz, A., Svitek, T., Biddy, C. Initial design and simulation of the LightSail-1 attitude determination and control system. In: Proceedings of the 2nd International Symposium on Solar Sailing, 2010: 135–140.
[7]
Spencer, D. A., Mansell, J. R., Betts, B., Bellardo, J. M., Diaz, A., Plante, B. The LightSail 2 controlled solar sailing demonstration mission. In: Proceedings of the 34th Annual Small Satellite Conference, 2020: SSC20-Ⅱ-01
[8]

Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C. NanoSail-D: A solar sail demonstration mission. Acta Astronautica, 2011, 68(5–6): 571–575.

[9]

Davoyan, A. R., Munday, J. N., Tabiryan, N., Swartzlander, G. A., Johnson, L. Photonic materials for interstellar solar sailing. Optica, 2021, 8(5): 722.

[10]

Zeng, X. Y., Gong, S. P., Li, J. F. Fast solar sail rendezvous mission to near Earth asteroids. Acta Astronautica, 2014, 105(1): 40–56.

[11]

Quarta, A. A., Mengali, G. Solar sail missions to Mercury with Venus gravity assist. Acta Astronautica, 2009, 65(3–4): 495–506.

[12]

Gong, S. P., Baoyin, H. X., Li, J. Solar sail three-body transfer trajectory design. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 873–886.

[13]

Gong, S. P., Gao, Y. F., Li, J. F. Solar sail time-optimal interplanetary transfer trajectory design. Research in Astronomy and Astrophysics, 2011, 11(8): 981–996.

[14]

Chu, Y., Wu, D., Gong, S. P. Enhanced transfer performance of Sun-facing diffractive sails in solar polar imager missions. Advances in Space Research, 2024, 73(9): 4827–4841.

[15]

Heiligers, J., Mingotti, G., McInnes, C. R. Optimal solar sail transfers between Halo orbits of different Sun-planet systems. Advances in Space Research, 2015, 55(5): 1405–1421.

[16]
Meras, A., Damaren, C. J. Using solar sails to transfer to the L5 Lagrange point. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2017: AIAA 2017-1731.
[17]

Farrés, A. Transfer orbits to L4 with a solar sail in the Earth–Sun system. Acta Astronautica, 2017, 137: 78–90.

[18]
Farres, A., Heiligers, J., Miguel, N. Road map to L4/L5 with a solar sail. In: Proceedings of the Space Flight Mechanics Meeting, 2018: AIAA 2018-0211.
[19]

Ancona, E., Kezerashvili, R. Y., Matloff, G. L. Exploring the Kuiper Belt with Sun-diving solar sails. Acta Astronautica, 2019, 160: 601–605.

[20]

Farrés, A., Heiligers, J., Miguel, N. Road map to L 4/L 5 with a solar sail. Aerospace Science and Technology, 2019, 95: 105458.

[21]

Sood, R., Howell, K. Solar sail transfers and trajectory design to Sun–Earth L4, L5: Solar observations and potential Earth Trojan exploration. The Journal of the Astronautical Sciences, 2019, 66(3): 247–281.

[22]

Song, Y., Gong, S. P. Solar-sail trajectory design for multiple near-Earth asteroid exploration based on deep neural networks. Aerospace Science and Technology, 2019, 91: 28–40.

[23]

Quarta, A. A., Mengali, G., Niccolai, L. Solar sail optimal transfer between heliostationary points. Journal of Guidance, Control, and Dynamics, 2020, 43(10): 1935–1942.

[24]

Niccolai, L., Quarta, A. A., Mengali, G. Solar sail heliocentric transfers with a Q-law. Acta Astronautica, 2021, 188: 352–361.

[25]

McInnes, C. R., McDonald, A. J. C., Simmons, J. F. L., MacDonald, E. W. Solar sail parking in restricted three-body systems. Journal of Guidance, Control, and Dynamics, 1994, 17(2): 399–406.

[26]

Baoyin, H., McInnes, C. R. Solar sail orbits at artificial Sun–Earth libration points. Journal of Guidance, Control, and Dynamics, 2005, 28: 1328–1331.

[27]

Baoyin, H., McInnes, C. R. Solar sail halo orbits at the Sun–Earth artificial L1 point. Celestial Mechanics and Dynamical Astronomy, 2006, 94(2): 155–171.

[28]

Baoyin, H., McInnes, C. R. Solar sail equilibria in the elliptical restricted three-body problem. Journal of Guidance, Control, and Dynamics, 2006, 29: 538–543.

[29]

Waters, T. J., McInnes, C. R. Periodic orbits above the ecliptic in the solar-sail restricted three-body problem. Journal of Guidance, Control, and Dynamics, 2007, 30: 687–693.

[30]

Farrés, A., Jorba, À. A dynamical system approach for the station keeping of a solar sail. The Journal of the Astronautical Sciences, 2008, 56(2): 199–230.

[31]

Simo, J., McInnes, C. R. Solar sail orbits at the Earth–Moon libration points. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(12): 4191–4196.

[32]

Farrés, A., Jorba, À. Periodic and quasi-periodic motions of a solar sail close to SL1 in the Earth–Sun system. Celestial Mechanics and Dynamical Astronomy, 2010, 107(1): 233–253.

[33]

Gong, S., Li, J., Simo, J. Orbital motions of a solar sail around the L2 Earth–Moon libration point. Journal of Guidance, Control, and Dynamics, 2014, 37: 1349–1356.

[34]

Gong, S. P., Li, J. F. Solar sail periodic orbits in the elliptic restricted three-body problem. Celestial Mechanics and Dynamical Astronomy, 2015, 121(2): 121–137.

[35]

Heiligers, J., Hiddink, S., Noomen, R., McInnes, C. R. Solar sail Lyapunov and Halo orbits in the Earth–Moon three-body problem. Acta Astronautica, 2015, 116: 25–35.

[36]

Zeng, X. Y., Gong, S. P., Li, J. F., Alfriend, K. T. Solar sail body-fixed hovering over elongated asteroids. Journal of Guidance, Control, and Dynamics, 2016, 39(6): 1223–1231.

[37]

MacDonald, M., Hughes, G. W., McInnes, C. R., Lyngvi, A., Falkner, P., Atzei, A. Solar polar orbiter: A solar sail technology reference study. Journal of Spacecraft and Rockets, 2006, 43(5): 960–972.

[38]

Heiligers, J., Parker, J. S., MacDonald, M. Novel solar-sail mission concepts for high-latitude Earth and lunar observation. Journal of Guidance, Control, and Dynamics, 2018, 41(1): 212–230.

[39]
Thomas, D., Kobayashi, K., Mike, B., Bean, Q., Capizzo, P., Clements, K., Fabisinski, L., Garcia, J., Steve, S. Solar polar imager concept. In: Proceedings of the ASCEND, 2020: AIAA 2020-4060.
[40]

Dubill, A. L., Swartzlander, G. A. Circumnavigating the Sun with diffractive solar sails. Acta Astronautica, 2021, 187: 190–195.

[41]

Zeng, X. Y., Alfriend, K. T., Vadali, S. R. Solar sail planar multireversal periodic orbits. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 674–681.

[42]

Zeng, X. Y., Vulpetti, G., Circi, C. Solar sail H-reversal trajectory: A review of its advances and applications. Astrodynamics, 2019, 3(1): 1–15.

[43]

MacDonald, M., McInnes, C. Solar sail science mission applications and advancement. Advances in Space Research, 2011, 48(11): 1702–1716.

[44]

Gong, S. P., MacDonald, M. Review on solar sail technology. Astrodynamics, 2019, 3(2): 93–125.

[45]

Spencer, D. A., Johnson, L., Long, A. C. Solar sailing technology challenges. Aerospace Science and Technology, 2019, 93: 105276.

[46]

Quarta, A. A., Mengali, G. Optimal solar sail transfer to linear trajectories. Acta Astronautica, 2013, 82(2): 189–196.

[47]

Niccolai, L., Quarta, A. A., Mengali, G. Analytical solution of the optimal steering law for non-ideal solar sail. Aerospace Science and Technology, 2017, 62: 11–18.

[48]

Oguri, K., Lantoine, G., McMahon, J. W. Solar sailing primer vector theory: Indirect trajectory optimization with practical mission considerations. Journal of Guidance, Control, and Dynamics, 2022, 45(1): 153–161.

[49]

Khabibullin, R. M. Spatial motion control algorithm of non-perfectly reflecting solar sail spacecraft for Earth–Mars flight. AIP Conference Proceedings, 2021, 2318(1): 190006.

[50]

Gorbunova, I., Starinova, O. An approach for the control method’s determination for an interplanetary mission with solar sail. AIP Conference Proceedings, 2017, 1798 (1): 020060.

[51]

Caruso, A., Niccolai, L., Quarta, A. A., Mengali, G. Effects of attitude constraints on solar sail optimal interplanetary trajectories. Acta Astronautica, 2020, 177: 39–47.

[52]

Wie, B. Solar sail attitude control and dynamics, part 1. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 526–535.

[53]
Lawrence, D., Piggott, S. Integrated trajectory and attitude control for a four-vane solar sail. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005: AIAA 2005-6082.
[54]
Mettler, E., Acikmese, A., Ploen, S. Attitude dynamics and control of solar sails with articulated vanes. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005: AIAA 2005-6081.
[55]

Hassanpour, S., Damaren, C. J. Collocated attitude and vibrations control for square solar sails with tip vanes. Acta Astronautica, 2020, 166: 482–492.

[56]

Romagnoli, D., Oehlschlägel, T. High performance two degrees of freedom attitude control for solar sails. Advances in Space Research, 2011, 48(11): 1869–1879.

[57]

Scholz, C., Romagnoli, D., Dachwald, B., Theil, S. Performance analysis of an attitude control system for solar sails using sliding masses. Advances in Space Research, 2011, 48(11): 1822–1835.

[58]

Huang, H., Zhou, J. Solar sailing CubeSat attitude control method with satellite as moving mass. Acta Astronautica, 2019, 159: 331–341.

[59]
Funase, R., Kanno, G., Tsuda, Y. Controllability of propellant-free attitude control system for spinning solar sail using thin-film reflectivity control devices considering arbitrary sail deformation. In: Proceedings of the International Astronautical Congress, 2012: 6131–6138.
[60]

Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., Kawaguchi, J. On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure. Advances in Space Research, 2011, 48(11): 1740–1746.

[61]

Mashtakov, Y., Ovchinnikov, M., Petrova, T., Tkachev, S. Two-satellite formation flying control by cell-structured solar sail. Acta Astronautica, 2020, 170: 592–600.

[62]

Swartzlander, G. A. Radiation pressure on a diffractive sailcraft. Journal of the Optical Society of America B, 2017, 34(6): C25.

[63]

Srivastava, P. R., Chu, Y. L., Swartzlander, G. A. Stable diffractive beam rider. Optics Letters, 2019, 44(12): 3082–3085.

[64]

Swartzlander, G. A. Theory of radiation pressure on a diffractive solar sail. Journal of the Optical Society of America B, 2022, 39(9): 2556.

[65]

Swartzlander, G. A. Jr. Flying on a rainbow: A solar-driven diffractive sailcraft. Journal of the British Interplanetary Society, 2018, 71: 130–132.

[66]
Swartzlander, G. A., Lucy Chu, Y. J., Srivastava, P. R. Beam riders and sailcraft based on diffractive light sails. In: Proceedings of the Frontiers in Optics / Laser Science, 2018: JTu2A.37.
[67]

Chu, Y., Firuzi, S., Gong, S. P. Controllable liquid crystal diffractive sail and its potential applications. Acta Astronautica, 2021, 182: 37–45.

[68]

Firuzi, S., Gong, S. P. Refractive sail and its applications in solar sailing. Aerospace Science and Technology, 2018, 77: 362–372.

[69]

Firuzi, S., Song, Y., Gong, S. P. Gradient-index solar sail and its optimal orbital control. Aerospace Science and Technology, 2021, 119: 107103.

[70]

Bassetto, M., Caruso, A., Quarta, A. A., Mengali, G. Optimal steering law of refractive sail. Advances in Space Research, 2021, 67(9): 2855–2864.

[71]

Quarta, A. A., Mengali, G., Bassetto, M., Niccolai, L. Optimal interplanetary trajectories for Sun-facing ideal diffractive sails. Astrodynamics, 2023, 7(3): 285–299.

[72]

Quarta, A. A., Mengali, G. Solar sail orbit raising with electro-optically controlled diffractive film. Applied Sciences, 2023, 13(12): 7078.

[73]

Bassetto, M., Mengali, G., Quarta, A. A. Diffractive sail-based displaced orbits for high-latitude environment monitoring. Remote Sensing, 2023, 15(24): 5626.

[74]
Pontryagin, L. S. Mathematical Theory of Optimal Processes. Routledge, 2018.
[75]
Rao A. V. A survey of numerical methods for optimal control. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2009: 497–528.
[76]

Li, Z. C., Liu, W. W., Cheng, H., Chen, S. Q., Tian, J. G. Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface. Scientific Reports, 2015, 5: 18106.

[77]

Tabiryan, N. V., Serak, S. V., Nersisyan, S. R., Roberts, D. E., Zeldovich, B. Y., Steeves, D. M., Kimball, B. R. Broadband waveplate lenses. Optics Express, 2016, 24(7): 7091–7102.

[78]

Yu, N. F., Capasso, F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13: 139–150.

Astrodynamics
Pages 613-631
Cite this article:
Chu Y, Gong S. Minimum-time rendezvous for Sun-facing diffractive solar sails with diverse deflection angles. Astrodynamics, 2024, 8(4): 613-631. https://doi.org/10.1007/s42064-024-0207-7

733

Views

0

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 December 2023
Accepted: 24 February 2024
Published: 28 August 2024
© Tsinghua University Press 2024
Return