AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article

An L2 to L Framework for the Landau Equation

Department of Mathematics, Pohang University of Science and Technology, Pohang,South Korea
Division of Applied Mathmatics, Brown University, Providence, USA
Show Author Information

Abstract

Consider the Landau equation with Coulomb potential in a periodic box. We develop a new L2 to L framework to construct global unique solutions near Maxwellian with small L norm. The first step is to establish global L2 estimates with strong velocity weight and time decay, under the assumption of L bound, which is further controlled by such L2 estimates via De Giorgi’s method (Golse et al. in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(1), 253–295 (2019), Imbert and Mouhot in arXiv:1505.04608 (2015)). The second step is to employ estimates in Sp spaces to control velocity derivatives to ensure uniqueness, which is based on Hölder estimates via De Giorgi’s method (Golse et al. in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(1), 253–295 (2019), Golse and Vasseur in arXiv:1506.01908 (2015), Imbert and Mouhot in arXiv:1505.04608 (2015)).

References

1

Alexandre, R., Villani, C.: On the Landau approximation in plasma physics. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(1), 61–95 (2004)

2

Boblylev, A.V., Pulvirenti, M., Saffirio, C.: From particle systems to the Landau equation: a consistency result. Commun. Math. Phys. 319(3), 683–702 (2013)

3

Bobylev, A., Gamba, I., Potapenko, I.: On some properties of the Landau kinetic equation. J. Stat. Phys. 161(6), 1327–1338 (2015)

4

Bouchut, F.: Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. (9) 81(11), 1135–1159 (2002)

5

Bramanti, M., Cerutti, M.C., Manfredini, M.: Lp estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200(2), 332–354 (1996)

6

Carrapatoso, K., Tristani, I., Wu, K.-C.: Cauchy problem and exponential stability for the inhomogeneous Landau equation. Arch. Ration. Mech. Anal. 221(1), 363–418 (2016)

7

Chen, Y., Desvillettes, L., He, L.: Smoothing effects for classical solutions of the full Landau equation. Arch. Ration. Mech. Anal. 193(1), 21–55 (2009)

8

Desvillettes, L.: Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. J. Funct. Anal. 269(5), 1359–1403 (2015)

9

Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323(1), 177–239 (2013)

10

Golse, F., Imbert, C., Mouhot, C., Vasseur, A.: Harnack inequality for kinetic Fokker–Planck equations with rough coefficients and application to the Landau equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(1), 253–295 (2019)

11
Golse, F., Vasseur, A.: Hölder regularity for hypoelliptic kinetic equations with rough diffusion coefficients. arXiv:1506.01908 (2015)
12

Gressman, P.T., Strain, R.M.: Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production. Adv. Math. 227(6), 2349–2384 (2011)

13

Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3), 391–434 (2002)

14

Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809 (2010)

15

Ha, S.-Y., Xiao, Q.: L2-stability of the Landau equation near global Maxwellians. J. Math. Phys. 56(8), 081505 (2015)

16

Hérau, F., Pravda-Starov, K.: Anisotropic hypoelliptic estimates for Landau-type operators. J. Math. Pures Appl. (9) 95(5), 513–552 (2011)

17

Hérau, F., Li, W.-X.: Global hypoelliptic estimates for Landau-type operators with external potential. Kyoto J. Math. 53(3), 533–565 (2013)

18

Hwang, H.J., Jang, J., Jung, J.: On the kinetic Fokker–Planck equation in a half-space with absorbing barriers. Indiana Univ. Math. J. 64(6), 1767–1804 (2015)

19

Hwang, H.J., Jang, J., Velázquez, J.J.L.: The Fokker–Planck equation with absorbing boundary conditions. Arch. Ration. Mech. Anal. 214(1), 183–233 (2014)

20
Imbert, C., Mouhot, C.: Hölder continuity of solutions to hypoelliptic equations with bounded measurable coefficients. arXiv:1505.04608 (2015)
21

Krieger, J., Strain, R.M.: Global solutions to a non-local diffusion equation with quadratic non-linearity. Commun. Partial Differ. Equ. 37(4), 647–689 (2012)

22

Liu, S., Ma, X.: Regularizing effects for the classical solutions to the Landau equation in the whole space. J. Math. Anal. Appl. 417(1), 123–143 (2014)

23

Luo, L., Yu, H.: Spectrum analysis of the linearized relativistic Landau equation. J. Stat. Phys. 163(4), 914–935 (2016)

24

Polidoro, S., Ragusa, M.A.: Sobolev–Morrey spaces related to an ultraparabolic equation. Manuscr. Math. 96(3), 371–392 (1998)

25

Strain, R.M., Guo, Y.: Almost exponential decay near Maxwellian. Commun. Partial Differ. Equ. 31(1–3), 417–429 (2006)

26

Strain, R.M., Zhu, K.: The Vlasov–Poisson–Landau system in Rx3. Arch. Ration. Mech. Anal. 210(2), 615–671 (2013)

27

Wu, K.-C.: Global in time estimates for the spatially homogeneous Landau equation with soft potentials. J. Funct. Anal. 266(5), 3134–3155 (2014)

28

Wu, K.-C.: Pointwise behavior of the linearized Boltzmann equation on a torus. SIAM J. Math. Anal. 46(1), 639–656 (2014)

Peking Mathematical Journal
Pages 131-202
Cite this article:
Kim, J., Guo, Y. & Hwang, H.J. An L2 to L Framework for the Landau Equation. Peking Math J 3, 131-202 (2020). https://doi.org/10.1007/s42543-019-00018-x

229

Views

23

Crossref

Altmetrics

Received: 02 February 2018
Accepted: 17 July 2019
Published: 15 January 2020
© Peking University 2020
Return