Article Link
Collect
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Article

Patterson–Sullivan Measures and Growth of Relatively Hyperbolic Groups

Beijing International Center for Mathematical Research and School of Mathematical Sciences, Peking University, Beijing, 100871, China
Show Author Information

Abstract

We prove that for a relatively hyperbolic group, there is a sequence of relatively hyperbolic proper quotients such that their growth rates converge to the growth rate of the group. Under natural assumptions, a similar result holds for the critical exponent of a cusp-uniform action of the group on a hyperbolic metric space. As a corollary, we obtain that the critical exponent of a torsion-free geometrically finite Kleinian group can be arbitrarily approximated by those of proper quotient groups. This resolves a question of Dal’bo–Peigné–Picaud–Sambusetti. Our approach is based on the study of Patterson–Sullivan measures on Bowditch boundary of a relatively hyperbolic group and gives a series of results on growth functions of balls and cones.

References

1

Arzhantseva, G., Lysenok, I.: Growth tightness for word hyperbolic groups. Math. Z. 241(3), 597–611 (2002)

2

Bestvina, M., Fujiwara, K.: A characterization of higher rank symmetric spaces via bounded cohomology. Geom. Funct. Anal. 19, 11–40 (2009)

3

Bogopolskii, O.V.: Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent. Algebra and Logic 36(3), 155–163 (1997)

4

Bowditch, B.: Geometrical finiteness for hyperbolic groups. J. Funct. Anal. 113, 245–317 (1993)

5
Bowditch, B.: Convergence groups and configuration spaces. In: Cossey, J., Miller, C.F., Neumann, W.D., Shapiro, M. (eds.), Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, pp. 23–54 (1999)
6

Bowditch, B.: Relatively hyperbolic groups. Int. J. Algebra Comput. 22(3), 1250016 (2012)

7
Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin (1999)
8

Burger, M., Mozes, S.: CAT(-1)-spaces, divergence groups and their commensurators. J. Am. Math. Soc. 9(1), 57–93 (1996)

9

Cannon, J.: The combinatorial structure of cocompact discrete hyperbolic groups. Geom. Dedicata 16(2), 123–148 (1984)

10

Coornaert, M.: Mesures de Patterson–Sullivan sure le bord d’un espace hyperbolique au sens de Gromov. Pac. J. Math. 159(2), 241–270 (1993)

11

Coulon, R.: Asphericity and small cancellation for rotation family of groups. Groups Geometry Dyn. 5(4), 729–765 (2011)

12

Coulon, R.: Growth of periodic quotient of hyperbolic groups. Algebraic & Geometric Topology 3, 3111–3133 (2013)

13

Dahmani, F.: Combination of convergence groups. Geom. Topol. 7, 933–963 (2003)

14

Dahmani, F., Guirardel, V., Osin, D.: Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Am. Math. Soc. 245(1156), v+152 pp, (2017)

15

Dal’bo, F., Otal, J.-P., Peigné, M.: Séries de Poincaré des groupes géométriquement finis. Israel J. Math. 118(3), 109–124 (2000)

16

Dal’bo, F., Peigné, M., Picaud, J.-C., Sambusetti, A.: On the growth of quotients of Kleinian groups. Ergodic Theory Dyn. Syst. 31(3), 835–851 (2011)

17
Druţu, C., Sapir, M.: Tree-graded spaces and asymptotic cones of groups. Topology 44(5), 959–1058 (2005). (With an appendix by D. Osin and M. Sapir)
18
Erschler, A.: Growth rates of small cancellation groups. In: Random Walks and Geometry. Walter de Gruyter, Berlin, pp. 421–430 (2004)
19

Farb, B.: Relatively hyperbolic groups. Geom. Funct. Anal. 8(5), 810–840 (1998)

20

Floyd, W.: Group completions and limit sets of Kleinian groups. Inventiones Math. 57, 205–218 (1980)

21

Gaboriau, D., Paulin, F.: Sur les immeubles hyperboliques. Geom. Dedicata 88, 153–197 (2001)

22

Gerasimov, V.: Expansive convergence groups are relatively hyperbolic. Geom. Funct. Anal. 19, 137–169 (2009)

23

Gerasimov, V.: Floyd maps for relatively hyperbolic groups. Geom. Funct. Anal. 22, 1361–1399 (2012)

24

Gerasimov, V., Potyagailo, L.: Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups. J. Eur. Math. Soc. 15, 2115–2137 (2013)

25

Gerasimov, V., Potyagailo, L.: Quasiconvexity in relatively hyperbolic groups. J. Reine Angew. Math. 710, 95–135 (2016)

26
Ghys, É., de la Harpe, P. (eds.): Sur les groupes hyperboliques d’après Mikhael Gromov. Progress Math., Vol. 83, Birkhäuser Boston, Boston (1990)
27

Grigorchuk, R., de la Harpe, P.: On problems related to growth, entropy and spectrum in group theory. J. Dyn. Control Syst. 3(1), 51–89 (1997)

28

Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

29
Gromov, M.: Hyperbolic groups. In: Gersten, S. (ed.), Essays in Group Theory, Springer, New York, pp. 75–263 (1987)
30

Hruska, G.: Relative hyperbolicity and relative quasiconvexity for countable groups. Algebr. Geom. Topol. 10, 1807–1856 (2010)

31

Hruska, G., Kleiner, B.: Hadamard spaces with isolated flats. Geom. Topol. 9, 1501–1538 (2005)

32

Karlsson, A.: Free subgroups of groups with nontrivial Floyd boundary. Comm. Algebra. 31, 5361–5376 (2003)

33

Marden, A.: The geometry of finitely generated Kleinian groups. Ann. Math. 99, 383–462 (1974)

34
Matsuzaki, K.: Dynamics of Kleinian groups – the Hausdorff dimesion of limit sets. In: Selected Papers on Classical Analysis, AMS Translations Ser. 2, Vol. 204, AMS, Providence, pp. 142–160 (2001)
35

Osborne, J., Yang, W.-Y.: Statistical hyperbolicity of relatively hyperbolic groups. Algebra. Geomet. Topol. 16, 2143–2158 (2016)

36

Osin, D.: Elementary subgroups of relatively hyperbolic groups and bounded generation. Internat. J. Algebra Comput. 16(1), 99–118 (2006)

37

Osin, D.: Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems. Mem. Am. Math. Soc. 179(843), vi+100 pp. (2006)

38

Patterson, S.: The limit set of a Fuchsian group. Acta Mathematica 176, 241–273 (1976)

39

Paulin, F.: Un groupe hyperbolique est déterminée par son bord. J. Lond. Math. Soc. 54(1), 50–74 (1996)

40

Peigné, M.: On some exotic schottky groups. Discrete Contin. Dyn. Syst. 31(2), 559–579 (2011)

41

Potyagailo, L., Yang, W.-Y.: Hausdorff dimension of boundaries of relatively hyperbolic groups. Geom. Topol. 23, 1779–1840 (2019)

42

Sabourau, S.: Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces. J. Modern Dyn. 7(2), 269–290 (2013)

43

Sambusetti, A.: Growth tightness of free and amalgamated products. Ann. Sci. École Norm. Sup. série 35(4), 477–488 (2002)

44

Sambusetti, A.: Growth tightness of surface groups. Expositiones Mathematicae 20, 345–363 (2002)

45

Sambusetti, A.: Asymptotic properties of coverings in negative curvature. Geom. Topol. 12(1), 617–637 (2008)

46

Shukhov, A.: On the dependence of the growth rate on the length of the defining relator. Math. Notes 65(4), 510–515 (1999)

47

Sisto, A.: Contracting elements and random walks. Journal für die Reine und Angewandte Mathematik 742, 79–114 (2018)

48

Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Publ. Math. IHES, 50, 171–202 (1979)

49

Tukia, P.: Conical limit points and uniform convergence groups. J. Reine. Angew. Math. 501, 71–98 (1998)

50

Yang, W.-Y.: Growth tightness for groups with contracting elements. Math. Proc. Cambridge Philos. Soc. 157, 297–319 (2014)

51

Yang, W.-Y.: Purely exponential growth of cusp-uniform actions. Ergodic Theory Dyn. Syst. 39(3), 795–831 (2019)

Peking Mathematical Journal
Pages 153-212
Cite this article:
Yang, WY. Patterson–Sullivan Measures and Growth of Relatively Hyperbolic Groups. Peking Math J 5, 153-212 (2022). https://doi.org/10.1007/s42543-020-00033-3
Metrics & Citations  
Article History
Copyright
Return