Abstract
We prove the following result: if a
We prove the following result: if a
Berman, R.: K-polystability of
Berman, R., Berndtsson, R.: Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics. J. Am. Math. Soc. 30, 1165–1196 (2017)
Berman, R., Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. J. Reine Angew. Math. 751, 27–89 (2019)
Berman, R., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge–Ampère equations. Publ. Math. Inst. Hautes Études Sci. 117, 179–245 (2013)
Berman, R., Darvas, T., Lu, C.H.: Convexity of the extended K-energy and the large time behaviour of the weak Calabi flow. Geom. Topol. 21, 2945–2988 (2017)
Berndtsson, B.: A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math. 200(1), 149–200 (2015)
Blum, H., Xu, C.Y.: Uniqueness of K-polystable degenerations of Fano varieties. Ann. Math. (2) 190(2), 609–656 (2019)
Boucksom, S., Favre, C., Jonsson, M.: Valuations and plurisubharmonic singularities. Publ. RIMS 44, 449–494 (2008)
Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) 67, 743–841 (2017)
Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability and asymptotics of energy functionals in Kähler geometry. J. Eur. Math. Soc. (JEMS) 21(9), 2905–2944 (2019)
Chen, X.X.: The space of Kähler metrics. J. Differ. Geom. 56(2), 189–234 (2000)
Coman, D., Guedj, V., Zeriahi, A.: Extension of plurisubharmonic functions with growth control. J. Reine Angew. Math. 676, 33–49 (2013)
Coman, D., Ma, X.N., Marinescu, G.: Equidistribution for sequences of line bundles on normal Kähler spaces. Geom. Topol. 21, 923–962 (2017)
Darvas, T.: The Mabuchi geometry of finite energy classes. Adv. Math. 285, 182–219 (2015)
Darvas, T.: Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics. Int. Math. Res. Not. (IMRN) 2017(22), 6752–6777 (2017)
Darvas, T., He, W.Y.: Geodesic rays and Kähler–Ricci trajectories on Fano manifolds. Trans. Am. Math. Soc. 369, 5069–5085 (2017)
Darvas, T., Rubinstein, Y.: Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. J. Am. Math. Soc. 30, 347–387 (2017)
Demailly, J.-P.: Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1, 361–409 (1992)
Demailly, J.-P., Pali, N.: Degenerate complex Monge–Ampère equations over compact Kähler manifolds. Int. J. Math. 21(3), 357–405 (2010)
Dervan, R.: Uniform stability of twisted constant scalar curvature Kähler metrics. Int. Math. Res. Not. (IMRN) 2016(15), 4728–4783 (2016)
Di Nezza, E., Guedj, V.: Geometry and topology of the space of Kähler metrics on singular varieties. Compos. Math. 154, 1593–1632 (2018)
Donaldson, S.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289–349 (2002)
Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler–Einstein metrics. J. Am. Math. Soc. 22, 607–639 (2009)
Fujita, K.: A valuative criterion for uniform K-stability of
Fujita, K.: Uniform K-stability and plt blowups of log Fano pairs. Kyoto J. Math. 59(2), 399–418 (2019)
Fujita, K., Odaka, Y.: On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (2) 70(4), 511–521 (2018)
Guedj, V., Zeriahi, A.: The weighted Monge–Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250(2), 442–482 (2007)
Guenancia, H., Pǎun, M.: Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors. J. Differ. Geom. 103(1), 15–57 (2016)
Jeffres, T., Mazzeo, R., Rubinstein, Y.: Kähler–Einstein metrics with edge singularities, with an appendix by C. Li and Y. Rubinstein. Ann. Math. (2) 183(1), 95–176 (2016)
Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180(1), 69–117 (1998)
Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166(16), 3147–3218 (2017)
Li, C., Wang, X.W., Xu, C.Y.: On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties. Duke Math. J. 168(8), 1387–1459 (2019)
Li, C., Xu, C.Y.: Special test configuration and K-stability of Fano varieties. Ann. Math. (2) 180(1), 197–232 (2014)
Odaka, Y.: The GIT stability of polarized varieties via discrepancy. Ann. Math. (2) 177(2), 645–661 (2013)
Spotti, C., Sun, S., Yao, C.J.: Existence and deformations of Kähler–Einstein metrics on smoothable
Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)
Tian, G.: K-stability and Kähler–Einstein metrics. Commun. Pure Appl. Math. 68(7), 1085–1156 (2015)
Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31, 339–411 (1978)