Article Link
Collect
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Article

The Arithmetic Version of the Frequency Transition Conjecture: New Proof and Generalization

Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
Show Author Information

Abstract

The arithmetic version of the frequency transition conjecture for the almost Mathieu operators was recently proved by Jitomirskaya and Liu [34]. We give a new proof via reducibility theory and duality, which derives from the method developed in [22] (in fact it is a simplified version). This new proof is applicable to more general quasiperiodic operators.

References

1
Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. In: Group Theoretical Methods in Physics (Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979), Ann. Israel Phys. Soc., Vol. 3, Hilger, Bristol, pp. 133–164 (1980)
2
Avila, A.: The absolutely continuous spectrum of the almost Mathieu operator, arXiv:0810.2965
3

Avila, A.: Global theory of one-frequency Schrödinger operators. Acta Math. 215(1), 1–54 (2015)

4
Avila, A.: Almost reducibility and absolute continuity. preprint. https://w3.impa.br/~avila/arac.pdf
5
Avila, A.: KAM, Lyapunov exponent and the spectral dichotomy for one-frequency Schrödinger operators. in preparation
6

Avila, A., Fayad, B., Krikorian, R.: A KAM Scheme for SL(2,R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)

7

Avila, A., Jitomirskaya, S.: The Ten Martini Problem. Ann. Math. 170(1), 303–342 (2009)

8

Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. J. Eur. Math. Soc. (JEMS) 12(1), 93–131 (2010)

9

Avila, A., Jitomirskaya, S., Marx, C.: Spectral theory of extended Harper's model and a question by Erdős and Szekeres. Invent. Math. 210(1), 283–339 (2017)

10

Avila, A., You, J.G., Zhou, Q.: Sharp phase transitions for the almost Mathieu operator. Duke Math. J. 166(14), 2697–2718 (2017)

11
Avila, A., You, J.G., Zhou, Q.: Dry Ten Martini Problem for noncritical almost Mathieu operator. in preparation
12

Avron, J., Osadchy, D., Seiler, R.: A topological look at the quantum Hall effect. Physics Today 56(8), 38–42 (2003)

13

Avron, J., Simon, B.: Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. Am. Math. Soc. (N.S.) 6(1), 81–85 (1982)

14
Bourgain, J.: Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, Vol. 158, Princeton University Press, Princeton, NJ (2005)
15

Bourgain, J., Goldstein, M.: On nonperturbative localization with quasi-periodic potential. Ann. of Math. (2) 152(3), 835–879 (2000)

16
Bourgain, J., Jitomirskaya, S.: Anderson localization for the band model. In: Milman V.D., Schechtman G. (eds.) Geometric Aspects of Functional Analysis, Lecture Notes in Math, Vol. 1745. Springer, Berlin, pp. 67–79 (2000)
17

Bourgain, J., Jitomirskaya, S.: Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math. 148(3), 453–463 (2002)

18

Chulaevsky, V., Dinaburg, E.: Methods of KAM-theory for long-range quasi-periodic operators on Zμ, Pure point spectrum. Commun. Math. Phys. 153(3), 559–577 (1993)

19

Eliasson, L.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179(2), 153–196 (1997)

20

Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132(1), 5–25 (1990)

21
Ge, L.R., Kachkovskiy, I.: Ballistic transport for one-dimensional quasiperiodic Schrödinger operators. arXiv:2009.02896 (to appear in Comm. Pure Appl. Math.)
22

Ge, L.R., You, J.G.: Arithmetic version of Anderson localization via reducibility. Geom. Funct. Anal. 30(5), 1370–1401 (2020)

23
Ge, L.R., You, J.G., Zhao, X.: Hölder regularity of the integrated density of states for quasi-periodic long-range operators on 2(Zd). arXiv:2009.08004 (to appear in Commun. Math. Phys.)
24
Ge, L.R., You, J.G., Zhou, Q.: Exponential dynamical localization: Criterion and applications. arXiv:1901.04258 (to appear in Ann. Sci. Éc. Norm. Supér. (4))
25

Gordon, A.Y.: The point spectrum of one-dimensional Schrödinger operators. Uspekhi Mat. Nauk. 31(4), 257–258 (1976)

26

Gordon, A.Y., Jitomirskaya, S., Last, Y., Simon, B.: Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math. 178(2), 169–183 (1997)

27

Herman, M. -R.: Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58(3), 453–502 (1983)

28

Hou, X.J., You, J.G.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260 (2012)

29

Jitomirskaya, S.: Anderson localization for the almost Mathieu equation: a nonperturbative proof. Commun. Math. Phys. 165(1), 49–57 (1994)

30
Jitomirskaya, S.: Almost everything about the almost Mathieu operator, Ⅱ. In: XI Internat. Congress of Math. Physics (Paris, 1994), Int. Press, Cambridge, MA, pp. 373–382 (1995)
31

Jitomirskaya, S.: Metal-insulator transition for the almost Mathieu operator. Ann. of Math. (2) 150(3), 1159–1175 (1999)

32
Jitomirskaya, S.: Singular continuous spectrum for critical almost Mathieu operators. To appear in Adv. Math.
33

Jitomirskaya, S., Kachkovskiy, I.: L2-reducibility and localization for quasi-periodic operators. Math. Res. Lett. 23(2), 431–444 (2016)

34

Jitomirskaya, S., Liu, W.C.: Universal hierarchical structure of quasi-periodic eigenfunctions. Ann. of Math. (2) 187(3), 721–776 (2018)

35
Jitomirskaya, S., Liu, W.C.: Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase. arXiv:1802.00781
36

Jitomirskaya, S., Simon, B.: Operators with singular continuous spectrum. Ⅲ. Almost periodic Schrödinger operators. Commun. Math. Phys. 165(1), 201–205 (1994)

37

Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84(3), 403–438 (1982)

38

Klein, S.: Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J. Funct. Anal. 218(2), 255–292 (2005)

39

Liu, W.C., Yuan, X.P.: Anderson localization for the almost Mathieu operator in the exponential regime. J. Spectr. Theory 5(1), 89–112 (2015)

40

Osadchy, D., Avron, J.E.: Hofstadter butterfly as quantum phase diagram. J. Math. Phys. 42(12), 5665–5671 (2001)

41

Peierls, R.: Zur theorie des diamagnetismus von leitungselektronen. Zeitschrift für Physik. 80(11–12), 763–791 (1933)

42

Puig, J.: A nonperturbative Eliasson's reducibility theorem. Nonlinearity 19(2), 355–376 (2006)

43

Simon, B.: Schrödinger operators in the twenty-first century. Math. Phys. 2000, 283–288 (2000)

44

Sinai, Ya. G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46(5–6), 861–909 (1987)

45

You, J.G., Zhou, Q.: Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications. Commun. Math. Phys. 323(3), 975–1005 (2013)

Peking Mathematical Journal
Pages 349-364
Cite this article:
Ge, L., You, J. & Zhao, X. The Arithmetic Version of the Frequency Transition Conjecture: New Proof and Generalization. Peking Math J 5, 349-364 (2022). https://doi.org/10.1007/s42543-021-00040-y
Metrics & Citations  
Article History
Copyright
Return