Abstract
The arithmetic version of the frequency transition conjecture for the almost Mathieu operators was recently proved by Jitomirskaya and Liu [
The arithmetic version of the frequency transition conjecture for the almost Mathieu operators was recently proved by Jitomirskaya and Liu [
Avila, A.: Global theory of one-frequency Schrödinger operators. Acta Math. 215(1), 1–54 (2015)
Avila, A., Fayad, B., Krikorian, R.: A KAM Scheme for SL(2,
Avila, A., Jitomirskaya, S.: The Ten Martini Problem. Ann. Math. 170(1), 303–342 (2009)
Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. J. Eur. Math. Soc. (JEMS) 12(1), 93–131 (2010)
Avila, A., Jitomirskaya, S., Marx, C.: Spectral theory of extended Harper's model and a question by Erdős and Szekeres. Invent. Math. 210(1), 283–339 (2017)
Avila, A., You, J.G., Zhou, Q.: Sharp phase transitions for the almost Mathieu operator. Duke Math. J. 166(14), 2697–2718 (2017)
Avron, J., Osadchy, D., Seiler, R.: A topological look at the quantum Hall effect. Physics Today 56(8), 38–42 (2003)
Avron, J., Simon, B.: Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. Am. Math. Soc. (N.S.) 6(1), 81–85 (1982)
Bourgain, J., Goldstein, M.: On nonperturbative localization with quasi-periodic potential. Ann. of Math. (2) 152(3), 835–879 (2000)
Bourgain, J., Jitomirskaya, S.: Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math. 148(3), 453–463 (2002)
Chulaevsky, V., Dinaburg, E.: Methods of KAM-theory for long-range quasi-periodic operators on
Eliasson, L.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179(2), 153–196 (1997)
Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132(1), 5–25 (1990)
Ge, L.R., You, J.G.: Arithmetic version of Anderson localization via reducibility. Geom. Funct. Anal. 30(5), 1370–1401 (2020)
Gordon, A.Y.: The point spectrum of one-dimensional Schrödinger operators. Uspekhi Mat. Nauk. 31(4), 257–258 (1976)
Gordon, A.Y., Jitomirskaya, S., Last, Y., Simon, B.: Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math. 178(2), 169–183 (1997)
Herman, M. -R.: Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58(3), 453–502 (1983)
Hou, X.J., You, J.G.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260 (2012)
Jitomirskaya, S.: Anderson localization for the almost Mathieu equation: a nonperturbative proof. Commun. Math. Phys. 165(1), 49–57 (1994)
Jitomirskaya, S.: Metal-insulator transition for the almost Mathieu operator. Ann. of Math. (2) 150(3), 1159–1175 (1999)
Jitomirskaya, S., Kachkovskiy, I.: L2-reducibility and localization for quasi-periodic operators. Math. Res. Lett. 23(2), 431–444 (2016)
Jitomirskaya, S., Liu, W.C.: Universal hierarchical structure of quasi-periodic eigenfunctions. Ann. of Math. (2) 187(3), 721–776 (2018)
Jitomirskaya, S., Simon, B.: Operators with singular continuous spectrum. Ⅲ. Almost periodic Schrödinger operators. Commun. Math. Phys. 165(1), 201–205 (1994)
Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84(3), 403–438 (1982)
Klein, S.: Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J. Funct. Anal. 218(2), 255–292 (2005)
Liu, W.C., Yuan, X.P.: Anderson localization for the almost Mathieu operator in the exponential regime. J. Spectr. Theory 5(1), 89–112 (2015)
Osadchy, D., Avron, J.E.: Hofstadter butterfly as quantum phase diagram. J. Math. Phys. 42(12), 5665–5671 (2001)
Peierls, R.: Zur theorie des diamagnetismus von leitungselektronen. Zeitschrift für Physik. 80(11–12), 763–791 (1933)
Puig, J.: A nonperturbative Eliasson's reducibility theorem. Nonlinearity 19(2), 355–376 (2006)
Simon, B.: Schrödinger operators in the twenty-first century. Math. Phys. 2000, 283–288 (2000)
Sinai, Ya. G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46(5–6), 861–909 (1987)
You, J.G., Zhou, Q.: Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications. Commun. Math. Phys. 323(3), 975–1005 (2013)