AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article

Equivariant R-Test Configurations and Semistable Limits of Q-Fano Group Compactifications

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China

Yan Li partially supported by NSFC Grant 12101043 and the Beijing Institute of Technology Research Fund Program for Young Scholars.

Show Author Information

Abstract

Let G be a connected, complex reductive group. In this paper, we classify G×G-equivariant normal R-test configurations of a polarized G-compactification. Then, for Q-Fano G-compactifications, we express the H-invariants of their equivariant normal R-test configurations in terms of the combinatory data. Based on Han and Li “Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties”, we compute the semistable limit of a K-unstable Fano G-compactification. As an application, we show that for the two smooth K-unstable Fano SO 4(C)-compactifications, the corresponding semistable limits are indeed the limit spaces of the normalized Kähler–Ricci flow.

References

1

Alexeev, V.A., Brion, M.: Stable reductive varieties Ⅱ: projective case. Adv. Math. 184, 382–408 (2004)

2

Alexeev, V.A., Katzarkov, L.V.: On K-stability of reductive varieties. Geom. Funct. Anal. 15, 297–310 (2005)

3

Bamler, R.: Convergence of Ricci flows with bounded scalar curvature. Ann. Math. 188, 753–831 (2018)

4
Blum, H., Liu, Y.C., Xu, C.Y., Zhuang, Z.Q.: The existence of the Kähler–Ricci soliton degeneration. arXiv: 2103.15278 (2021)
5

Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) 67, 743–841 (2017)

6

Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke. Math. J. 58, 397–424 (1989)

7

Cao, H.D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)

8

Chen, X.X., Sun, S., Wang, B.: Kähler–Ricci flow, Kähler–Einstein metric, and K-stability. Geom. Topol. 22, 3145–3173 (2018)

9

Chen, X.X., Wang, B.: Space of Ricci flows (Ⅱ)—Part B: weak compactness of the flows. J. Differ. Geom. 116, 1–123 (2020)

10

Delcroix, T.: K-Stability of Fano spherical varieties. Ann. Sci. Éc. Norm. Supér. 4(53), 615–662 (2020)

11

Delcroix, T.: Kähler geometry of horosymmetric varieties, and application to Mabuchi’s K-energy functional. J. Reine Angew. Math. 763, 129–199 (2020)

12

Dervan, R., Szekélyhidi, G.: The Kähler–Ricci flow and optimal degenerations. J. Differ. Geom. 116, 187–203 (2020)

13

Ding, W.Y., Tian, G.: Kähler–Einstein metrics and the generalized Futaki invariants. Invent. Math. 110, 315–335 (1992)

14

Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

15

Gagliardi, G., Hofscheier, J.: Gorenstein spherical Fano varieties. Geom. Dedicata 178, 111–133 (2015)

16
Han, J.Y., Li, C.: On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations. arXiv: 2006.00903 (To appear in Comm. Pure Appl. Math.)
17
Han, J.Y., Li, C.: Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties. arXiv: 2009.01010 (To appear in Geom. Topol.)
18

Kirichenko, V.A., Smirnov, E.Yu., Timorin, V.A.: Schubert calculus and Gel’fand–Tsetlin polytopes (in Russian). Uspekhi Mat. Nauk 67, 89–128 (2012)

19
Knop, F.: The Luna–Vust theory of spherical embeddings. In: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pp. 225–249. Manoj Prakashan, Madras (1991)
20

Li, C., Wang, X.W., Xu, C.Y.: Algebracity of metric tangent cones and equivariant K-stability. J. Am. Math. Soc. 34, 1175–1214 (2021)

21

Li, Y., Li, Z.Y.: Finiteness of Q-Fano compactifications of semisimple group with Kähler–Einstein metrics. Int. Math. Res. Not. IMRN 2022(15), 11776–11795 (2022)

22
Li, Y., Tian, G., Zhu, X.H.: Singular limits of Kähler–Ricci flow on Fano G-manifolds. arXiv: 1807.09167 (To appear in Amer. J. Math.)
23
Li, Y., Tian, G., Zhu, X.H.: Singular Kähler–Einstein metrics on Q-Fano compactifications of Lie groups. arXiv: 2001.11320 (To appear in Math. in Engineering)
24

Li, Y., Zhou, B.: Mabuchi metrics and properness of modified Ding functional. Pac. J. Math. 302, 659–692 (2019)

25

Li, Y., Zhou, B., Zhu, X.H.: K-energy on polarized compactifications of Lie groups. J. Funct. Anal. 275, 1023–1072 (2018)

26

Luna, D., Vust, T.: Plongements d’espaces homogeněs. Comment. Math. Helv. 58, 186–245 (1983)

27

Okounkov, A.Yu.: Note on the Hilbert polynomial of a spherical variety (in Russian). Funktsional. Anal. i Prilozhen. 31, 82–85 (1997)

28
Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv: math/0211159 (2002)
29

Pukhlikov, A.V., Khovanskiǐ, A.G.: The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes (in Russian). Algebra i Analiz 4, 188–216 (1992)

30
Teissier, B.: Valuations, deformations, and toric geometry. In: Valuation theory and its applications, Vol. Ⅱ (Saskatoon, SK, 1999), pp. 361–459, Fields Inst. Commun., Vol. 33, Amer. Math. Soc., Providence (2003)
31

Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)

32

Tian, G., Zhang, S.J., Zhang, Z.L., Zhu, X.H.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365, 6669–6695 (2013)

33

Tian, G., Zhang, Z.L.: Regularity of Kähler–Ricci flows on Fano manifolds. Acta Math. 216, 127–176 (2016)

34

Tian, G., Zhu, X.H.: Uniqueness of Kähler–Ricci solitons. Acta Math. 184, 271–305 (2000)

35

Tian, G., Zhu, X.H.: Convergence of the Kähler–Ricci flow. J. Am. Math. Sci. 17, 675–699 (2006)

36

Tian, G., Zhu, X.H.: Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)

37

Timashëv, D.A.: Equivariant compactifications of reductive groups (in Russian). Mat. Sb. 194, 119–146 (2003)

38
Timashëv, D. A.: Homogeneous Spaces and Equivariant Embeddings. Invariant Theory and Algebraic Transformation Groups Ⅷ, Encyclopaedia of Mathematical Sciences, Vol. 138. Springer, Berlin (2011)
39
Yao, Y.: Mabuchi Solitons and Relative Ding Stability of Toric Fano Varieties. arXiv: 1701.04016 (To appear in Int. Math. Res. Not. IMRN)
40

Zhang, Q.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. IMRN 2007(17), rnm056 (2007)

41

Zhang, Q.: Bounds on volume growth of geodesic balls under Ricci flow. Math. Res. Lett. 19, 245–253 (2012)

42

Zhuang, Z.Q.: Optimal destabilizing centers and equivariant K-stability. Invent. Math. 226, 195–223 (2021)

43
Zhelobenko, D.P., Shtern, A.I.: Representations of Lie Groups (in Russian). Nauka, Moscow (1983)
Peking Mathematical Journal
Pages 559-607
Cite this article:
Li, Y., Li, Z. Equivariant R-Test Configurations and Semistable Limits of Q-Fano Group Compactifications. Peking Math J 6, 559-607 (2023). https://doi.org/10.1007/s42543-022-00054-0

216

Views

2

Crossref

Altmetrics

Received: 03 November 2021
Revised: 22 May 2022
Accepted: 08 July 2022
Published: 07 November 2022
© Peking University 2022
Return