Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Unsteady dynamic analysis for the cavitating hydrofoils based on OpenFOAM

Min Xiang1()Houcun Zhou1William Yang2
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
CSIRO Process Science and Engineering, Melbourne, Australia
Show Author Information

Abstract

Recently, cavitation has attracted great attention not only due to its negative effect on the performance of fluid machinery, but also owing to its vigorous prospect in drag reduction for underwater vehicles. However, strong instability and obvious nonlinearity exist for cavitating flow, making it hard to predict it precisely. In this paper, a cavitating solver coupled with the Bubble-Droplet cavitation model has been established based on the OpenFOAM platform. Simulation has been carried out for the cavitating hydrofoil of Clark-Y. Transient evolutions of the flow parameters including the void fraction, velocity, and pressure have been obtained, giving detail insights on the unstable shedding dynamics for the cavitating hydrofoil. Evaluation of the Bubble-Droplet cavitation model has been implemented by varying the threshold value in the model. The transient cavity shape, shedding frequency, and time-dependent curves for the hydrodynamic coefficient have been carefully compared, indicating that this threshold value has obvious effect on the cavity profile during the shedding process. By comparing with the experimental data, the predicted lifts are slightly under-predicted while the drags are over-predicted, but basically the numerical results agree with the experiment well.

References

 
Ahn, S.-H., Xiao, Y., Wang, Z., Luo, Y., Fan, H. 2018. Unsteady prediction of cavitating flow around a three dimensional hydrofoil by using a modified RNG k-ε model. Ocean Eng, 158: 275-285.
 
Arndt, R. E. A. 1981. Cavitation in fluid machinery and hydraulic structures. Ann Rev Fluid Mech, 13: 273-382.
 
Astoli, J.-A., Dorange, P., Billard, J.-Y., Tomas, I. C. 1999. An experimental investigation of cavitation inception and development in a two-dimensional Eppler hydrofoi. J Fluids Eng, 12: 164-173.
 
Brizzolara, S. 2015. A new family of dual-mode super-cavitating hydrofoils. In: Proceedings of the 4th International Symposium on Marine Propulsors.
 
Foeth, E. J. 2008. The structure of three-dimensional sheet cavitation. Ph.D. Thesis. Technische Universiteit Delft.
 
Huang, B., Zhao, Y., Wang, G. 2014. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Comput Fluids, 92: 113-124.
 
Kinnas, S. A., Sun, H., Lee, H. 2003. Numerical analysis of flow around the cavitating CAV2003 hydrofoil. In: Proceedings of the 5th International Symposium on Cavitation.
 
Kubota, A., Kato, H., Yamaguchi, H., Maeda, M. 1989. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. J Fluids Eng, 111: 204-210.
 
Kunz, R. F., Boger, D. A., Chyczewski, T. S., Stinebring, D. R., Gibeling, H. J. 1999. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In: Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference.
 
Kunz, R. F., Lindau, J. W., Kaday, T. A., Peltier, L. J. 2003. Unsteady RANS and detached eddy simulations of cavitating flow over a hydrofoil. In: Proceedings of the 5th International Symposium on Cavitation.
 
Liu, M., Tan, L., Liu, Y., Xu, Y., Cao, S. 2018. Large eddy simulation of cavitation vortex interaction and pressure fluctuation around hydrofoil ALE 15. Ocean Eng, 163: 264-274.
 
Long, X., Cheng, H., Ji, B., Arndt, R. E. A., Peng, X. 2018. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. Int J Multiphase Flow, 100: 41-56.
 
Merkle, C. L. 1998. Computational modelling of the dynamics of sheet cavitation. In: Proceedings of the 3rd International Symposium on Cavitation.
 
Pearce, B. W., Brandner, P. A. 2012. Experimental investigation of a base-ventilated supercavitating hydrofoil with interceptor. In: Proceedings of the 8th International Symposium on Cavitation.
 
Qin, Q., Song, C. C. S., Arndt, R. E. A. 2003. A numerical study of an unsteady turbulent wake behind a cavitating hydrofoil. In: Proceedings of the 5th International Symposium on Cavitation.
 
Singhal, A. K., Athavale, M. M., Li, H., Jiang, Y. 2002. Mathematical basis and validation of the full cavitation model. J Fluids Eng, 124: 617-624.
 
Usta, O., Korkut, E. 2018. A study for cavitating flow analysis using DES model. Ocean Eng, 160: 397-411.
 
Wang, G., Ostoja-Starzewski, M. 2007. Large eddy simulation of a sheet/cloud cavitation on a NACA001 hydrofoil. Appl Math Model, 31: 417-447.
 
Wang, G., Senocak, I., Shyy, W., Ikohagi, T., Cao, S. 2001. Dynamics of attached turbulent cavitating flows. Prog Aerosp Sci, 37: 551-581.
Experimental and Computational Multiphase Flow
Pages 101-108
Cite this article:
Xiang M, Zhou H, Yang W. Unsteady dynamic analysis for the cavitating hydrofoils based on OpenFOAM. Experimental and Computational Multiphase Flow, 2019, 1(2): 101-108. https://doi.org/10.1007/s42757-019-0004-3
Metrics & Citations  
Article History
Copyright
Return