AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

One-dimensional drift-flux correlations for two-phase flow in medium-size channels

School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017, USA
Show Author Information

Abstract

The drift-flux parameters such as distribution parameter and drift velocity are critical parameters in the one-dimensional two-fluid model used in nuclear thermal-hydraulic system analysis codes. These parameters affect the drag force acting on the gas phase. The accurate prediction of the drift-flux parameters is indispensable to the accurate prediction of the void fraction. Because of this, the current paper conducted a state-of-the-art review on one-dimensional drift-flux correlations for various flow channel geometries and flow orientations. The essential conclusions were: (1) a channel geometry affected the distribution parameter, (2) a boundary condition (adiabatic or diabatic) affected the distribution parameter in a bubbly flow, (3) the drift velocity for a horizontal channel could be approximated to be zero, and (4) the distribution parameter developed for a circular channel was not a good approximation to calculate the distribution parameter for a sub-channel of the rod bundle. In addition to the above, the review covered a newly proposed concept of the two-group drift-flux model to provide the constitutive equation to close the modified gas mixture momentum equation of the two-fluid model mathematically. The review was also extended to the existing drift-flux correlations applicable to a full range of void fraction (Chexel-Lellouche correlation and Bhagwat-Ghajar correlation).

References

 
Abbs, T., Hibiki, T. 2019. One-dimensional drift-flux correlation for vertical upward two-phase flow in a large size rectangular channel. Prog Nucl Energ, 110: 311-324.
 
Andersen, J. G. M., Chu, K. H. 1982. BWR refill-reflood program task 4.7: Constitutive correlations for shear and heat transfer for the BWR version of TRAC (No. NUREG/CR--2134). General Electric Co.
 
Bajorek, S. 2008. TRACE/V5.0 theory manual; field equations, solutions methods, and physical models. United States Nuclear Regulatory Commission.
 
Baotong, S., Rassame, S., Nilsuwankosit, S., Hibiki, T. 2019. Drift-flux correlation of oil-water flow in horizontal channels. J Fluid Eng, 141: 031301.
 
Barnea, D., Shoham, O., Taitel, Y., Dukler, A. E. 1980. Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory. Int J Multiphase Flow, 6: 217-225.
 
Bhagwat, S. M., Ghajar, A. J. 2014. A flow pattern independent drift flux model based void fraction correlation for a wide range of gas-liquid two phase flow. Int J Multiphase Flow, 59: 186-205.
 
Borkowski, J. A., Wade, N. L., Rouhani, S. Z., Shumway, R. W., Weaver, W. L., Rettig, W. H., Kullberg, C. L. 1992. TRAC-BF1/MOD1 models and correlations (No. NUREG/CR--4391). Nuclear Regulatory Commission.
 
Brooks, C. S., Hibiki, T., Ishii, M. 2012a. Interfacial drag force in one-dimensional two-fluid model. Prog Nucl Energ, 61: 57-68.
 
Brooks, C. S., Ozar, B., Hibiki, T., Ishii, M. 2012b. Two-group drift-flux model in boiling flow. Int J Heat Mass Transfer, 55: 6121-6129.
 
Brooks, C. S., Paranjape, S. S., Ozar, B., Hibiki, T., Ishii, M. 2012c. Two-group drift-flux model for closure of the modified two-fluid model. Int J Heat Fluid Flow, 37: 196-208.
 
Chexal, B., Lellouche, G., Horowitz, J., Healzer, J., Oh, S. 1991. The Chexal-Lellouche void fraction correlation for generalized applications. Nuclear Safety Analysis Center of the Electric Power Research Institute, USA.
 
Chuang, T. J., Hibiki, T. 2015. Vertical upward two-phase flow CFD using interfacial area transport equation. Prog Nucl Energ, 85: 415-427.
 
Chuang, T. J., Hibiki, T. 2017. Interfacial forces used in two-phase flow numerical simulation. Int J Heat Mass Transfer, 113: 741-754.
 
Colebrook, C. F. 1939. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J Inst Civ Eng, 11: 133-156.
 
Goda, H., Hibiki, T., Kim, S., Ishii, M., Uhle, J. 2003. Drift-flux model for downward two-phase flow. Int J Heat Mass Transfer, 46: 4835-4844.
 
Grossetete, C. 1995. Caractérisation expérimentale et simulations de l’évolution d’un écoulement diphasique à bulles ascendant dans une conduite vertical. Ph.D. Thesis. Châtenay-Malabry, Ecole centrale de Paris, France.
 
Hibiki, T., Ishii, M. 1999. Experimental study on interfacial area transport in bubbly two-phase flows. Int J Heat Mass Transfer, 42: 3019-3035.
 
Hibiki, T., Ishii, M. 2002a. Distribution parameter and drift velocity of drift-flux model in bubbly flow. Int J Heat Mass Transfer, 45: 707-721.
 
Hibiki, T., Ishii, M. 2002b. Interfacial area concentration of bubbly flow systems. Chem Eng Sci, 57: 3967-3977.
 
Hibiki, T., Ishii, M. 2003. One-dimensional drift-flux model for two-phase flow in a large diameter pipe. Int J Heat Mass Transfer, 46: 1773-1790.
 
Hibiki, T., Ishii, M. 2009. Interfacial area transport equations for gas-liquid flow. J Comput Multiphase Flows, 1: 1-22.
 
Hibiki, T., Ishii, M., Xiao, Z. 2001. Axial interfacial area transport of vertical bubbly flows. Int J Heat Mass Transfer, 44: 1869-1888.
 
Hibiki, T., Mishima, K. 2001. Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels. Nucl Eng Des, 203: 117-131.
 
Hibiki, T., Ozaki, T. 2017. Modeling of void fraction covariance and relative velocity covariance for upward boiling flow in vertical pipe. Int J Heat Mass Transfer, 112: 620-629.
 
Hibiki, T., Rong, S. T., Ye, M., Ishii, M. 2003. Modeling of bubble-layer thickness for formulation of one-dimensional interfacial area transport equation in subcooled boiling two-phase flow. Int J Heat Mass Transfer, 46: 1409-1423.
 
Hibiki, T., Schlegel, J. P., Ozaki, T., Miwa, S., Rassame, S. 2018. Simplified two-group two-fluid model for three-dimensional two-phase flow computational fluid dynamics for vertical upward flow. Prog Nucl Energ, 108: 503-516.
 
Information System Laboratories. 2001. RELAP5/MOD3.3 code manual volume IV: Models and correlations. US NRC (NUREG/CR-5535/ Rev 1-Vol.IV).
 
Ishii, M. 1977. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Report No. ANL-77-47. Argonne National Laboratory, USA,
 
Ishii, M., Hibiki, T. 2010. Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. Springer Science & Business Media.
 
Ishii, M., Mishima, K. 1984. Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des, 82: 107-126.
 
Julia, J. E., Hibiki, T. 2011. Flow regime transition criteria for two-phase flow in a vertical annulus. Int J Heat Fluid Flow, 32: 993-1004.
 
Julia, J. E., Hibiki, T., Ishii, M., Yun, B. J., Park, G. C. 2009. Drift-flux model in a sub-channel of rod bundle geometry. Int J Heat Mass Transfer, 52: 3032-3041.
 
Kalkach-Navarro, S. 1992. The mathematical modeling of flow regime transition in bubbly two-phase flow. Ph.D. Thesis. Rensselaer Polytechnic Institute, USA.
 
Kataoka, I., Ishii, M. 1987. Drift flux model for large diameter pipe and new correlation for pool void fraction. Int J Heat Mass Transfer, 30: 1927-1939.
 
Kondo, M., Kumamaru, H., Murata, H., Anoda, Y., Kukita, Y. 1993. Core void fraction distribution under high-temperature high-pressure boil-off conditions (No. JAERI-M-93-200). Japan Atomic Energy Research Institute.
 
Liu, H., Hibiki, T. 2017. Flow regime transition criteria for upward two-phase flow in vertical rod bundles. Int J Heat Mass Transfer, 108: 423-433.
 
Liu, H., Pan, L. M., Hibiki, T., Zhou, W. X., Ren, Q. Y., Li, S. S. 2018. One-dimensional interfacial area transport for bubbly two-phase flow in vertical 5×5 rod bundle. Int J Heat Fluid Flow, 72: 257-273.
 
Liu, T. T. 1989. Experimental investigation of turbulence structure in two-phase bubbly flow. Ph.D. Thesis. Northwestern University, USA.
 
Lokanathan, M., Hibiki, T. 2018. Flow regime transition criteria for co-current downward two-phase flow. Prog Nucl Energ, 103: 165-175.
 
Marchaterre, J. F. 1956. The effect of pressure on boiling density in multiple rectangular channels (Report No. ANL-5522). Argonne National Laboratory, USA.
 
Mishima, K., Ishii, M. 1984. Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transfer, 27: 723-737.
 
Morooka, S. I., Yoshida, H., Inoue, A., Oishi, M., Aoki, T., Nagaoka, K. 1991. In-bundle void measurement of BWR fuel assembly by X-ray CT scanner. In: Proceedings of the 1st JSME/ASME Joint International Conference on Nuclear Engineering, Paper No. 38.
 
Ozaki, T., Hibiki, T. 2015. Drift-flux model for rod bundle geometry. Prog Nucl Energ, 83: 229-247.
 
Ozaki, T., Hibiki, T. 2018. Modeling of distribution parameter, void fraction covariance and relative velocity covariance for upward steam-water boiling flow in vertical rod bundle. J Nucl Sci Tech, 55: 386-399.
 
Ozaki, T., Suzuki, R., Mashiko, H., Hibiki, T. 2013. Development of drift-flux model based on 8×8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions. J Nucl Sci Tech, 50: 563-580.
 
Ozar, B., Dixit, A., Chen, S. W., Hibiki, T., Ishii, M. 2012. Interfacial area concentration in gas-liquid bubbly to churn-turbulent flow regime. Int J Heat Fluid Flow, 38: 168-179.
 
Ozar, B., Jeong, J. J., Dixit, A., Julia, J. E., Hibiki, T., Ishii, M. 2008. Flow structure of gas-liquid two-phase flow in an annulus. Chem Eng Sci, 63: 3998-4011.
 
Rassame, S., Hibiki, T. 2018. Drift-flux correlation for gas-liquid two-phase flow in a horizontal pipe. Int J Heat Fluid Flow, 69: 33-42.
 
Serizawa, A., Kataoka, I., Michiyoshi, I. 1991. Phase distribution in bubbly flow. In: Multiphase Science and Technology, Vol. 6. Hewitt, G. F., Delhaye, J. M., Zuber, N. Eds. Hemisphere, 257-301.
 
Taitel, Y., Bornea, D., Dukler, A. E. 1980. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J, 26: 345-354.
 
Vaidheeswaran, A., Hibiki, T. 2017. Bubble-induced turbulence modeling for vertical bubbly flows. Int J Heat Mass Transfer, 115: 741-752.
 
Yang, X., Schlegel, J. P., Liu, Y., Paranjape, S., Hibiki, T., Ishii, M. 2012. Measurement and modeling of two-phase flow parameters in scaled 8×8 BWR rod bundle. Int J Heat Fluid Flow, 34: 85-97.
Experimental and Computational Multiphase Flow
Pages 85-100
Cite this article:
Hibiki T. One-dimensional drift-flux correlations for two-phase flow in medium-size channels. Experimental and Computational Multiphase Flow, 2019, 1(2): 85-100. https://doi.org/10.1007/s42757-019-0009-y

828

Views

16

Downloads

27

Crossref

27

Web of Science

25

Scopus

Altmetrics

Received: 07 January 2019
Revised: 06 February 2019
Accepted: 06 February 2019
Published: 17 April 2019
© Tsinghua University Press 2019
Return