AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Numerical modelling of shock–bubble interactions using a pressure-based algorithm without Riemann solvers

Fabian Denner( )Berend G. M. van Wachem
Chair of Mechanical Process Engineering, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
Show Author Information

Abstract

The interaction of a shock wave with a bubble features in many engineering and emerging technological applications, and has been used widely to test new numerical methods for compressible interfacial flows. Recently, density-based algorithms with pressure-correction methods as well as fully-coupled pressure-based algorithms have been established as promising alternatives to classical density-based algorithms based on Riemann solvers. The current paper investigates the predictive accuracy of fully-coupled pressure-based algorithms without Riemann solvers in modelling the interaction of shock waves with one-dimensional and two-dimensional bubbles in gas–gas and liquid–gas flows. For a gas bubble suspended in another gas, the mesh resolution and the applied advection schemes are found to only have a minor influence on the bubble shape and position, as well as the behaviour of the dominant shock waves and rarefaction fans. For a gas bubble suspended in a liquid, however, the mesh resolution has a critical influence on the shape, the position and the post-shock evolution of the bubble, as well as the pressure and temperature distribution.

References

 
Abgrall, R., Karni, S. 2001. Computations of compressible multifluids. J Comput Phys, 169: 594623.
 
Abgrall, R., Saurel, R. 2003. Discrete equations for physical and numerical compressible multiphase mixtures. J Comput Phys, 186: 361396.
 
Allaire, G., Clerc, S., Kokh, S. 2002. A five-equation model for the simulation of interfaces between compressible fluids. J Comput Phys, 181: 577616.
 
Anderson, J. D. 2003. Modern Compressible Flow: With a Historical Perspective. McGraw-Hill New York.
 
Ando, K., Liu, A.-Q., Ohl, C.-D. 2012. Homogeneous nucleation in water in microuidic channels. Phys Rev Lett, 109: 044501.
 
Baer, M. R., Nunziato, J. W. 1986. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int J Multiphase Flow, 12: 861889.
 
Bagabir, A., Drikakis, D. 2001. Mach number effects on shock–bubble interaction. Shock Waves, 11: 209218.
 
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L. D., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., May, D., McInnes, L. C., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H. 2017. PETSc users manual revision 3.8. Technical Report. ANL-95/11 - Revision 3.8. Argonne National Laboratory.
 
Bartholomew, P., Denner, F., Abdol-Azis, M. H., Marquis, A., van Wachem, B. G. M. 2018. Unified formulation of the momentum-weighted interpolation for collocated variable arrangements. J Comput Phys, 375: 177208.
 
Bo, W., Grove, J. W. 2014. A volume of fluid method based ghost fluid method for compressible multi-fluid flows. Comput Fluid, 90: 113122.
 
Brouillette, M. 2002. The Richtmyer–Meshkov instability. Ann Rev Fluid Mech, 34: 445468.
 
Chang, C.-H., Liou, M.-S. 2007. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme. J Comput Phys, 225: 840873.
 
Chorin, A. J. 1967. A numerical method for solving incompressible viscous flow problems. J Comput Phys, 2: 1226.
 
Chorin, A. J., Marsden, J. E. 1993. A Mathematical Introduction to Fluid Mechanics. Springer Verlag.
 
Coralic, V., Colonius, T. 2014. Finite-volume WENO scheme for viscous compressible multicomponent flows. J Comput Phys, 274: 95121.
 
Cordier, F., Degond, P., Kumbaro, A. 2012. An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J Comput Phys, 231: 56855704.
 
Delale, C. F. 2013. Bubble Dynamics and Shock Waves. Springer Berlin Heidelberg.
 
Demirdžić, I., Lilek, Ž., Perić, M. 1993. A collocated finite volume method for predicting flows at all speeds. Int J Numer Meth Fluids, 16: 10291050.
 
Denner, F. 2018. Fully-coupled pressure-based algorithm for compressible flows: Linearisation and iterative solution strategies. Comput Fluid, 175: 5365.
 
Denner, F., van Wachem, B. 2015. TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness. J Comput Phys, 298: 466479.
 
Denner, F., van Wachem, B. G. M. 2014. Compressive VOF method with skewness correction to capture sharp interfaces on arbitrary meshes. J Comput Phys, 279: 127144.
 
Denner, F., Xiao, C.-N., van Wachem, B. G. M. 2018. Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation. J Comput Phys, 367: 192234.
 
Fedkiw, R. P., Aslam, T., Merriman, B., Osher, S. 1999a. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys, 152: 457492.
 
Fedkiw, R. P., Aslam, T., Xu, S. J. 1999b. The ghost fluid method for deflagration and detonation discontinuities. J Comput Phys, 154: 393427.
 
Fuster, D. 2018. A review of models for bubble clusters in cavitating flows. Flow Turbulence Combust, 102: 497536.
 
Fuster, D., Popinet, S. 2018. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J Comput Phys, 374: 752768
 
Goncalves, E., Hoarau, Y., Zeidan, D. 2019. Simulation of shock-induced bubble collapse using a four-equation model. Shock Waves, 29: 221234.
 
Haas, J.-F., Sturtevant, B. 1987. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech, 181: 41.
 
Haimovich, O., Frankel, S. H. 2017. Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Comput Fluid, 146: 105116.
 
Harlow, F. H., Amsden, A. A. 1971a. A numerical fluid dynamics calculation method for all flow speeds. J Comput Phys, 8: 197213.
 
Harlow, F., Amsden, A. 1971b. Fluid Dynamics, Monograph LA-4700. Los Alamos National Laboratory.
 
Hauke, G., Hughes, T. J. R. 1998. A comparative study of different sets of variables for solving compressible and incompressible flows. Comput Method Appl M, 153: 144.
 
Hejazialhosseini, B., Rossinelli, D., Koumoutsakos, P. 2013. Vortex dynamics in 3D shock–bubble interaction. Phys Fluid, 25: 110816.
 
Hirt, C. W., Nichols, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 39: 201225.
 
Hou, T. Y., Floch, P. G. L. 1994. Why nonconservative schemes converge to wrong solutions: Error analysis. Math Comput, 62: 497530.
 
Hu, X. Y., Khoo, B. C. 2004. An interface interaction method for compressible multifluids. J Comput Phys, 198: 3564.
 
Johnsen, E. 2007. Numerical simulations of non-spherical bubble collapse: With applications to shockwave lithotripsy. Ph.D. Thesis. California Institute of Technology, USA.
 
Johnsen, E. R. I. C., Colonius, T. I. M. 2009. Numerical simulations of non-spherical bubble collapse. J Fluid Mech, 629: 231262.
 
Johnsen, E., Colonius, T. 2006. Implementation of WENO schemes in compressible multicomponent flow problems. J Comput Phys, 219: 715732.
 
Karimian, S. M. H., Schneider, G. E. 1994. Pressure-based computational method for compressible and incompressible flows. J Thermophys Heat Tr, 8: 267274.
 
Kokh, S., Lagoutière, F. 2010. An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model. J Comput Phys, 229: 27732809.
 
Kunz, R. F., Cope, W. K., Venkateswaran, S. 1999. Development of an implicit method for multi-fluid flow simulations. J Comput Phys, 152: 78101.
 
Layes, G., Jourdan, G., Houas, L. 2003. Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys Rev Lett, 91: 174502.
 
Layes, G., Jourdan, G., Houas, L. 2005. Experimental investigation of the shock wave interaction with a spherical gas inhomogeneity. Phys Fluid, 17: 028103.
 
Liu, C., Hu, C. H. 2017. Adaptive THINC-GFM for compressible multi-medium flows. J Comput Phys, 342: 4365.
 
Liu, T. G., Khoo, B. C., Yeo, K. S. 2003. Ghost fluid method for strong shock impacting on material interface. J Comput Phys, 190: 651681.
 
Michael, L., Nikiforakis, N. 2019. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: Inert case. Shock Waves, 29: 153172.
 
Moguen, Y., Bruel, P., Dick, E. 2015. Solving low Mach number Riemann problems by a momentum interpolation method. J Comput Phys, 298: 741746.
 
Moguen, Y., Bruel, P., Dick, E. 2019. A combined momentum-interpolation and advection upstream splitting pressure-correction algorithm for simulation of convective and acoustic transport at all levels of Mach number. J Comput Phys, 384: 1641.
 
Moguen, Y., Kousksou, T., Bruel, P., Vierendeels, J., Dick, E. 2012. Pressure–velocity coupling allowing acoustic calculation in low Mach number flow. J Comput Phys, 231: 55225541.
 
Moukalled, F., Mangani, L., Darwish, M. 2016. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab. Springer.
 
Murrone, A., Guillard, H. 2005. A five equation reduced model for compressible two phase flow problems. J Comput Phys, 202: 664698.
 
Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Bonazza, R. 2008a. Vorticity evolution in two- and three-dimensional simulations for shock–bubble interactions. Phys Scripta, T132: 014019.
 
Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Ranjan, D., Anderson, M. H., Bonazza, R. 2008b. A computational parameter study for the three-dimensional shock–bubble interaction. J Fluid Mech, 594: 85124.
 
Nourgaliev, R. R., Dinh, T. N., Theofanous, T. G. 2006. Adaptive characteristics-based matching for compressible multifluid dynamics. J Comput Phys, 213: 500529.
 
Ohl, S.-W., Ohl, C.-D. 2016. Acoustic cavitation in a microchannel. In: Handbook of Ultrasonics and Sonochemistry. Springer Singapore, 99135.
 
Pan, S., Adami, S., Hu, X., Adams, N. A. 2018. Phenomenology of bubble-collapse-driven penetration of biomaterial-surrogate liquid–liquid interfaces. Phys Rev Fluids, 3: 114005.
 
Park, J. H., Munz, C.-D. 2005. Multiple pressure variables methods for fluid flow at all Mach numbers. Int J Numer Meth Fluids, 49: 905931.
 
Quirk, J. J., Karni, S. 1996. On the dynamics of a shock–bubble interaction. J Fluid Mech, 318: 129.
 
Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R. 2007. Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys Rev Lett, 98: 024502.
 
Ranjan, D., Oakley, J., Bonazza, R. 2011. Shock–bubble interactions. Annu Rev Fluid Mech, 43: 117140.
 
Roe, P. 1986. Characteristic-based schemes for the Euler equations. Ann Rev Fluid Mech, 18: 337365.
 
Saurel, R., Abgrall, R. 1999. A simple method for compressible multifluid flows. SIAM J Sci Comput, 21: 11151145.
 
Saurel, R., Le Métayer, O., Massoni, J., Gavrilyuk, S. 2007. Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves, 16: 209232.
 
Saurel, R., Pantano, C. 2018. Diffuse-interface capturing methods for compressible two-phase flows. Ann Rev Fluid Mech, 50: 105130.
 
Shukla, R. K. 2014. Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows. J Comput Phys, 276: 508540.
 
Shukla, R. K., Pantano, C., Freund, J. B. 2010. An interface capturing method for the simulation of multi-phase compressible flows. J Comput Phys, 229: 74117439.
 
Shyue, K.-M. 2006. A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. Shock Waves, 15: 407423.
 
Terashima, H., Tryggvason, G. 2009. A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J Comput Phys, 228: 40124037.
 
Tian, B. L., Toro, E. F., Castro, C. E. 2011. A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput Fluid, 46: 122132.
 
Tokareva, S. A., Toro, E. F. 2010. HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow. J Comput Phys, 229: 35733604.
 
Toro, E. F., Spruce, M., Speares, W. 1994. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4: 2534.
 
Turkel, E. 2006. Numerical methods and nature. J Sci Comput, 28: 549570.
 
Turkel, E., Fiterman, A., van Leer, B. 1993. Preconditioning and the limit to the incompressible flow equations. Technical Report. NASA CR-191500. Institute for Computer Applications in Science and Engineering Hampton VA, USA.
 
Ubbink, O., Issa, R. I. 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. J Comput Phys, 153: 2650.
 
Van der Heul, D. R., Vuik, C., Wesseling, P. 2003. A conservative pressure-correction method for flow at all speeds. Comput Fluid, 32: 11131132.
 
Van Doormaal, J. P., Raithby, G. D., McDonald, B. H. 1987. The segregated approach to predicting viscous compressible fluid flows. J Turbomach, 109: 268277.
 
Wang, C. W., Liu, T. G., Khoo, B. C. 2006. A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J Sci Comput, 28: 278302.
 
Wesseling, P. 2001. Principles of Computational Fluid Dynamics. Springer.
 
Wong, M. L., Lele, S. K. 2017. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows. J Comput Phys, 339: 179209.
 
Xiang, G., Wang, B. 2017. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity. J Fluid Mech, 825: 825852.
 
Xiao, C.-N., Denner, F., van Wachem, B. G. M. 2017. Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries. J Comput Phys, 346: 91130.
 
Xiao, F. 2004. Unified formulation for compressible and incompressible flows by using multi-integrated moments I: One-dimensional inviscid compressible flow. J Comput Phys, 195: 629654.
 
Yoo, Y.-L., Sung, H.-G. 2018. Numerical investigation of an interaction between shock waves and bubble in a compressible multiphase flow using a diffuse interface method. Int J Heat Mass Tran, 127: 210221.
 
Zhai, Z., Si, T., Luo, X., Yang, J. 2011. On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys Fluid, 23: 084104.
Experimental and Computational Multiphase Flow
Pages 271-285
Cite this article:
Denner F, van Wachem BGM. Numerical modelling of shock–bubble interactions using a pressure-based algorithm without Riemann solvers. Experimental and Computational Multiphase Flow, 2019, 1(4): 271-285. https://doi.org/10.1007/s42757-019-0021-2

627

Views

8

Crossref

10

Web of Science

8

Scopus

Altmetrics

Received: 26 February 2019
Revised: 02 April 2019
Accepted: 03 April 2019
Published: 05 December 2019
© Tsinghua University Press 2019
Return