Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Numerical modelling of shock–bubble interactions using a pressure-based algorithm without Riemann solvers

Fabian Denner()Berend G. M. van Wachem
Chair of Mechanical Process Engineering, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
Show Author Information

Abstract

The interaction of a shock wave with a bubble features in many engineering and emerging technological applications, and has been used widely to test new numerical methods for compressible interfacial flows. Recently, density-based algorithms with pressure-correction methods as well as fully-coupled pressure-based algorithms have been established as promising alternatives to classical density-based algorithms based on Riemann solvers. The current paper investigates the predictive accuracy of fully-coupled pressure-based algorithms without Riemann solvers in modelling the interaction of shock waves with one-dimensional and two-dimensional bubbles in gas–gas and liquid–gas flows. For a gas bubble suspended in another gas, the mesh resolution and the applied advection schemes are found to only have a minor influence on the bubble shape and position, as well as the behaviour of the dominant shock waves and rarefaction fans. For a gas bubble suspended in a liquid, however, the mesh resolution has a critical influence on the shape, the position and the post-shock evolution of the bubble, as well as the pressure and temperature distribution.

References

 
Abgrall, R., Karni, S. 2001. Computations of compressible multifluids. J Comput Phys, 169: 594623.
 
Abgrall, R., Saurel, R. 2003. Discrete equations for physical and numerical compressible multiphase mixtures. J Comput Phys, 186: 361396.
 
Allaire, G., Clerc, S., Kokh, S. 2002. A five-equation model for the simulation of interfaces between compressible fluids. J Comput Phys, 181: 577616.
 
Anderson, J. D. 2003. Modern Compressible Flow: With a Historical Perspective. McGraw-Hill New York.
 
Ando, K., Liu, A.-Q., Ohl, C.-D. 2012. Homogeneous nucleation in water in microuidic channels. Phys Rev Lett, 109: 044501.
 
Baer, M. R., Nunziato, J. W. 1986. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int J Multiphase Flow, 12: 861889.
 
Bagabir, A., Drikakis, D. 2001. Mach number effects on shock–bubble interaction. Shock Waves, 11: 209218.
 
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L. D., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., May, D., McInnes, L. C., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H. 2017. PETSc users manual revision 3.8. Technical Report. ANL-95/11 - Revision 3.8. Argonne National Laboratory.
 
Bartholomew, P., Denner, F., Abdol-Azis, M. H., Marquis, A., van Wachem, B. G. M. 2018. Unified formulation of the momentum-weighted interpolation for collocated variable arrangements. J Comput Phys, 375: 177208.
 
Bo, W., Grove, J. W. 2014. A volume of fluid method based ghost fluid method for compressible multi-fluid flows. Comput Fluid, 90: 113122.
 
Brouillette, M. 2002. The Richtmyer–Meshkov instability. Ann Rev Fluid Mech, 34: 445468.
 
Chang, C.-H., Liou, M.-S. 2007. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme. J Comput Phys, 225: 840873.
 
Chorin, A. J. 1967. A numerical method for solving incompressible viscous flow problems. J Comput Phys, 2: 1226.
 
Chorin, A. J., Marsden, J. E. 1993. A Mathematical Introduction to Fluid Mechanics. Springer Verlag.
 
Coralic, V., Colonius, T. 2014. Finite-volume WENO scheme for viscous compressible multicomponent flows. J Comput Phys, 274: 95121.
 
Cordier, F., Degond, P., Kumbaro, A. 2012. An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J Comput Phys, 231: 56855704.
 
Delale, C. F. 2013. Bubble Dynamics and Shock Waves. Springer Berlin Heidelberg.
 
Demirdžić, I., Lilek, Ž., Perić, M. 1993. A collocated finite volume method for predicting flows at all speeds. Int J Numer Meth Fluids, 16: 10291050.
 
Denner, F. 2018. Fully-coupled pressure-based algorithm for compressible flows: Linearisation and iterative solution strategies. Comput Fluid, 175: 5365.
 
Denner, F., van Wachem, B. 2015. TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness. J Comput Phys, 298: 466479.
 
Denner, F., van Wachem, B. G. M. 2014. Compressive VOF method with skewness correction to capture sharp interfaces on arbitrary meshes. J Comput Phys, 279: 127144.
 
Denner, F., Xiao, C.-N., van Wachem, B. G. M. 2018. Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation. J Comput Phys, 367: 192234.
 
Fedkiw, R. P., Aslam, T., Merriman, B., Osher, S. 1999a. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys, 152: 457492.
 
Fedkiw, R. P., Aslam, T., Xu, S. J. 1999b. The ghost fluid method for deflagration and detonation discontinuities. J Comput Phys, 154: 393427.
 
Fuster, D. 2018. A review of models for bubble clusters in cavitating flows. Flow Turbulence Combust, 102: 497536.
 
Fuster, D., Popinet, S. 2018. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J Comput Phys, 374: 752768
 
Goncalves, E., Hoarau, Y., Zeidan, D. 2019. Simulation of shock-induced bubble collapse using a four-equation model. Shock Waves, 29: 221234.
 
Haas, J.-F., Sturtevant, B. 1987. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech, 181: 41.
 
Haimovich, O., Frankel, S. H. 2017. Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Comput Fluid, 146: 105116.
 
Harlow, F. H., Amsden, A. A. 1971a. A numerical fluid dynamics calculation method for all flow speeds. J Comput Phys, 8: 197213.
 
Harlow, F., Amsden, A. 1971b. Fluid Dynamics, Monograph LA-4700. Los Alamos National Laboratory.
 
Hauke, G., Hughes, T. J. R. 1998. A comparative study of different sets of variables for solving compressible and incompressible flows. Comput Method Appl M, 153: 144.
 
Hejazialhosseini, B., Rossinelli, D., Koumoutsakos, P. 2013. Vortex dynamics in 3D shock–bubble interaction. Phys Fluid, 25: 110816.
 
Hirt, C. W., Nichols, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 39: 201225.
 
Hou, T. Y., Floch, P. G. L. 1994. Why nonconservative schemes converge to wrong solutions: Error analysis. Math Comput, 62: 497530.
 
Hu, X. Y., Khoo, B. C. 2004. An interface interaction method for compressible multifluids. J Comput Phys, 198: 3564.
 
Johnsen, E. 2007. Numerical simulations of non-spherical bubble collapse: With applications to shockwave lithotripsy. Ph.D. Thesis. California Institute of Technology, USA.
 
Johnsen, E. R. I. C., Colonius, T. I. M. 2009. Numerical simulations of non-spherical bubble collapse. J Fluid Mech, 629: 231262.
 
Johnsen, E., Colonius, T. 2006. Implementation of WENO schemes in compressible multicomponent flow problems. J Comput Phys, 219: 715732.
 
Karimian, S. M. H., Schneider, G. E. 1994. Pressure-based computational method for compressible and incompressible flows. J Thermophys Heat Tr, 8: 267274.
 
Kokh, S., Lagoutière, F. 2010. An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model. J Comput Phys, 229: 27732809.
 
Kunz, R. F., Cope, W. K., Venkateswaran, S. 1999. Development of an implicit method for multi-fluid flow simulations. J Comput Phys, 152: 78101.
 
Layes, G., Jourdan, G., Houas, L. 2003. Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys Rev Lett, 91: 174502.
 
Layes, G., Jourdan, G., Houas, L. 2005. Experimental investigation of the shock wave interaction with a spherical gas inhomogeneity. Phys Fluid, 17: 028103.
 
Liu, C., Hu, C. H. 2017. Adaptive THINC-GFM for compressible multi-medium flows. J Comput Phys, 342: 4365.
 
Liu, T. G., Khoo, B. C., Yeo, K. S. 2003. Ghost fluid method for strong shock impacting on material interface. J Comput Phys, 190: 651681.
 
Michael, L., Nikiforakis, N. 2019. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: Inert case. Shock Waves, 29: 153172.
 
Moguen, Y., Bruel, P., Dick, E. 2015. Solving low Mach number Riemann problems by a momentum interpolation method. J Comput Phys, 298: 741746.
 
Moguen, Y., Bruel, P., Dick, E. 2019. A combined momentum-interpolation and advection upstream splitting pressure-correction algorithm for simulation of convective and acoustic transport at all levels of Mach number. J Comput Phys, 384: 1641.
 
Moguen, Y., Kousksou, T., Bruel, P., Vierendeels, J., Dick, E. 2012. Pressure–velocity coupling allowing acoustic calculation in low Mach number flow. J Comput Phys, 231: 55225541.
 
Moukalled, F., Mangani, L., Darwish, M. 2016. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab. Springer.
 
Murrone, A., Guillard, H. 2005. A five equation reduced model for compressible two phase flow problems. J Comput Phys, 202: 664698.
 
Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Bonazza, R. 2008a. Vorticity evolution in two- and three-dimensional simulations for shock–bubble interactions. Phys Scripta, T132: 014019.
 
Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Ranjan, D., Anderson, M. H., Bonazza, R. 2008b. A computational parameter study for the three-dimensional shock–bubble interaction. J Fluid Mech, 594: 85124.
 
Nourgaliev, R. R., Dinh, T. N., Theofanous, T. G. 2006. Adaptive characteristics-based matching for compressible multifluid dynamics. J Comput Phys, 213: 500529.
 
Ohl, S.-W., Ohl, C.-D. 2016. Acoustic cavitation in a microchannel. In: Handbook of Ultrasonics and Sonochemistry. Springer Singapore, 99135.
 
Pan, S., Adami, S., Hu, X., Adams, N. A. 2018. Phenomenology of bubble-collapse-driven penetration of biomaterial-surrogate liquid–liquid interfaces. Phys Rev Fluids, 3: 114005.
 
Park, J. H., Munz, C.-D. 2005. Multiple pressure variables methods for fluid flow at all Mach numbers. Int J Numer Meth Fluids, 49: 905931.
 
Quirk, J. J., Karni, S. 1996. On the dynamics of a shock–bubble interaction. J Fluid Mech, 318: 129.
 
Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R. 2007. Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys Rev Lett, 98: 024502.
 
Ranjan, D., Oakley, J., Bonazza, R. 2011. Shock–bubble interactions. Annu Rev Fluid Mech, 43: 117140.
 
Roe, P. 1986. Characteristic-based schemes for the Euler equations. Ann Rev Fluid Mech, 18: 337365.
 
Saurel, R., Abgrall, R. 1999. A simple method for compressible multifluid flows. SIAM J Sci Comput, 21: 11151145.
 
Saurel, R., Le Métayer, O., Massoni, J., Gavrilyuk, S. 2007. Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves, 16: 209232.
 
Saurel, R., Pantano, C. 2018. Diffuse-interface capturing methods for compressible two-phase flows. Ann Rev Fluid Mech, 50: 105130.
 
Shukla, R. K. 2014. Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows. J Comput Phys, 276: 508540.
 
Shukla, R. K., Pantano, C., Freund, J. B. 2010. An interface capturing method for the simulation of multi-phase compressible flows. J Comput Phys, 229: 74117439.
 
Shyue, K.-M. 2006. A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. Shock Waves, 15: 407423.
 
Terashima, H., Tryggvason, G. 2009. A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J Comput Phys, 228: 40124037.
 
Tian, B. L., Toro, E. F., Castro, C. E. 2011. A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput Fluid, 46: 122132.
 
Tokareva, S. A., Toro, E. F. 2010. HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow. J Comput Phys, 229: 35733604.
 
Toro, E. F., Spruce, M., Speares, W. 1994. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4: 2534.
 
Turkel, E. 2006. Numerical methods and nature. J Sci Comput, 28: 549570.
 
Turkel, E., Fiterman, A., van Leer, B. 1993. Preconditioning and the limit to the incompressible flow equations. Technical Report. NASA CR-191500. Institute for Computer Applications in Science and Engineering Hampton VA, USA.
 
Ubbink, O., Issa, R. I. 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. J Comput Phys, 153: 2650.
 
Van der Heul, D. R., Vuik, C., Wesseling, P. 2003. A conservative pressure-correction method for flow at all speeds. Comput Fluid, 32: 11131132.
 
Van Doormaal, J. P., Raithby, G. D., McDonald, B. H. 1987. The segregated approach to predicting viscous compressible fluid flows. J Turbomach, 109: 268277.
 
Wang, C. W., Liu, T. G., Khoo, B. C. 2006. A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J Sci Comput, 28: 278302.
 
Wesseling, P. 2001. Principles of Computational Fluid Dynamics. Springer.
 
Wong, M. L., Lele, S. K. 2017. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows. J Comput Phys, 339: 179209.
 
Xiang, G., Wang, B. 2017. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity. J Fluid Mech, 825: 825852.
 
Xiao, C.-N., Denner, F., van Wachem, B. G. M. 2017. Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries. J Comput Phys, 346: 91130.
 
Xiao, F. 2004. Unified formulation for compressible and incompressible flows by using multi-integrated moments I: One-dimensional inviscid compressible flow. J Comput Phys, 195: 629654.
 
Yoo, Y.-L., Sung, H.-G. 2018. Numerical investigation of an interaction between shock waves and bubble in a compressible multiphase flow using a diffuse interface method. Int J Heat Mass Tran, 127: 210221.
 
Zhai, Z., Si, T., Luo, X., Yang, J. 2011. On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys Fluid, 23: 084104.
Experimental and Computational Multiphase Flow
Pages 271-285
Cite this article:
Denner F, van Wachem BGM. Numerical modelling of shock–bubble interactions using a pressure-based algorithm without Riemann solvers. Experimental and Computational Multiphase Flow, 2019, 1(4): 271-285. https://doi.org/10.1007/s42757-019-0021-2
Metrics & Citations  
Article History
Copyright
Return