AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effect of instantaneous change of surface temperature and density on an unsteady liquid-vapour front in a porous medium

Zafar Hayat Khan1,2( )Rashid Ahmad3,4Licheng Sun1
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084, China
School of Mathematics and Physics, University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Swabi, KPK, Pakistan
Show Author Information

Abstract

This article presents a comprehensive analysis of time dependent condensation model embedded in a porous medium with variations in liquid-vapour densities. Both similarity and asymptotic solutions for the unsteady liquid-vapour phase change front are obtained with the manifestation of various pertinent parameters. The obtained results are compared which congregate well as depicted clearly in graphs. Results indicate that with different diffusivity and contrast ratios, the similarity front parameter is found to be gradually declining with variation in a density ratio. We have shown for the condensation process, the ratio of sensible to latent heat is independent of time and is equal to the half of the Stefan number of the liquid phase.

References

 
Bear, J., Buchlin, J.-M. 1981. Modelling and Applications of Transport Phenomena in Porous Media. Kluwer Academic Publishers.
 
Beckett, G., MacKenzie, J. A., Robertson, M. L. 2001. A moving mesh finite element method for the solution of two-dimensional Stefan problems. J Comput Phys, 168: 500-518.
 
Bernoff, A. J., Witelski, T. P. 2010. Stability and dynamics of self-similarity in evolution equations. J Eng Math, 66: 11-31.
 
Bodvarsson, G., Pruess, K., Lippmann, M. 1986. Modeling of geothermal systems. J Petrol Technol, 38: 1007-1021.
 
Bonacina, C., Comini, G., Fasano, A., Primicerio, M. 1973. Numerical solution of phase-change problems. Int J Heat Mass Tran, 16: 1825-1832.
 
Carey, V. P. 2007. Liquid-Vapor Phase-Change Phenomena. Taylor & Francis, Inc.
 
Carslaw, H. S., Jaeger, J. C. 1959. Conduction of Heat in Solids. Clarendon Press.
 
Chiareli, A. O. P., Huppert, H. E., Worster, M. G. 1994. Segregation and flow during the solidification of alloys. J Cryst Growth, 139: 134-146.
 
Date, A. W. 1991. A strong enthalpy formulation for the Stefan problem. Int J Heat Mass Tran, 34: 2231-2235.
 
Douglas, J. 1957. A uniqueness theorem for the solution of a Stefan problem. Proc Am Math Soc, 8: 402-408.
 
Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S., Zalewski, L. 2011. A review on phase-change materials: Mathematical modeling and simulations. Renew Sust Energ Rev, 15: 112-130.
 
Evans, G. W. 1951. A note on the existence of a solution to a problem of Stefan. Q Appl Math, 9: 185-193.
 
Gupta, S. C. 2003. The Classical Stefan Problem: Basic Concepts, Modelling and Analysis. Elsevier.
 
Hager, J., Whitaker, S. 2000. Vapor-liquid jump conditions within a porous medium: Results for mass and energy. Transport Porous Med, 40: 73-111.
 
Harris, K. T., Haji-Sheikh, A., Agwu Nnanna, A. G. 2001. Phase-change phenomena in porous media—a non-local thermal equilibrium model. Int J Heat Mass Tran, 44: 1619-1625.
 
Khan, Z. H. 2014. Transition to instability of liquid-vapour front in a porous medium cooled from above. Int J Heat Mass Tran, 70: 610-620.
 
Khan, Z. H., Pritchard, D. 2013. Liquid-vapour fronts in porous media: Multiplicity and stability of front positions. Int J Heat Mass Tran, 61: 1-17.
 
Khan, Z. H., Pritchard, D. 2015. Anomaly of spontaneous transition to instability of liquid-vapour front in a porous medium. Int J Heat Mass Tran, 84: 448-455.
 
Lunardini, V. J. 1981. Heat Transfer in Cold Climates. Van Nostrand Reinhold Company.
 
Masur, L. J., Mortensen, A., Cornie, J. A., Flemings, M. C. 1989. Infiltration of fibrous preforms by a pure metal: Part II. Experiment. Metall Trans A, 20: 2549-2557.
 
Mattheij, R. M. M., Rienstra, S. W., ten Thije Boonkkamp, J. H. M. 2005. Partial Differential Equations: Modeling, Analysis, Computation. SIAM.
 
Mortensen, A., Masur, L. J., Cornie, J. A., Flemings, M. C. 1989. Infiltration of fibrous preforms by a pure metal: Part I. Theory. Metall Trans A, 20: 2535-2547.
 
Ochoa-Tapia, J. A., Whitaker, S. 1997. Heat transfer at the boundary between a porous medium and a homogeneous fluid. Int J Heat Mass Tran, 40: 2691-2707.
 
Rubin, A., Schweitzer, S. 1972. Heat transfer in porous media with phase change. Int J Heat Mass Tran, 15: 43-60.
 
Solomon, A. 1981. A note on the Stefan number in slab melting and solidification. Lett Heat Mass Trans, 8: 229-235.
 
Torranc, K. E. 1986. Phase-change heat transfer in porous media. Heat Transfer, 1: 181-188.
Experimental and Computational Multiphase Flow
Pages 115-121
Cite this article:
Khan ZH, Ahmad R, Sun L. Effect of instantaneous change of surface temperature and density on an unsteady liquid-vapour front in a porous medium. Experimental and Computational Multiphase Flow, 2020, 2(2): 115-121. https://doi.org/10.1007/s42757-019-0027-9

739

Views

5

Crossref

7

Web of Science

5

Scopus

Altmetrics

Received: 06 March 2019
Revised: 18 April 2019
Accepted: 19 April 2019
Published: 10 October 2019
© Tsinghua University Press 2019
Return