AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Computational modeling of fiber transport in human respiratory airways—A review

Lin Tian1( )Goodarz Ahmadi2
School of Engineering - Mechanical and Automotive, RMIT University, Bundoora, VIC, Australia
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, USA
Show Author Information

Abstract

Investigations on the respiratory transport and deposition of airborne asbestos, man-made vitreous fibers (MMVFs), and carbon nanofiber/carbon nanotubes have been actively conducted in the past few decades. The elongated particles’ distinctive needle-like geometry has been identified as the main cause of extreme carcinogenicity when compared to inhaled spherical particles. Consequently, uncovering the intrinsic relationship between the particle’s unique elongated shape and its transport characteristics in human respiratory systems is crucial for understanding fiber inhalation toxicity. Currently, such information can only be provided by computational modeling. This review summarized the current state of the art of computational modeling of fiber transport in the human respiratory tract. The needed future researches were also discussed.

References

 
B. Asgharian,, G. Ahmadi, 1998. Effect of fiber geometry on deposition in small airways of the lung. Aerosol Sci Tech, 29: 459-474.
 
G. K. Batchelor, 1970. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J Fluid Mech, 44: 419-440.
 
H. Brenner, 1963. The Stokes resistance of an arbitrary particle. Chem Eng Sci, 18: 1-25.
 
R. C. Brown, 1994. Man-made mineral fibres: Hazard, risk and regulation. Indoor Environ, 3: 237-247.
 
J. M. Burgers, 1938. Second report on viscosity and plasticity. Prepared by the Committee for the Study of Viscosity of the Academy of Sciences at Amsterdam. Kon Ned Akad Wet Verhand, 16: 1-287.
 
D. Cavallo,, A. Campopiano,, G. Cardinali,, S. Casciardi,, P. De Simone,, D. Kovacs,, B. Perniconi,, G. Spagnoli,, C. L. Ursini,, C. Fanizza, 2004. Cytotoxic and oxidative effects induced by man-made vitreous fibers (MMVFs) in a human mesothelial cell line. Toxicology, 201: 219-229.
 
S. Chandrasekhar, 1943. Stochastic problems in physics and astronomy. Rev Mod Phys, 15: 1-89.
 
Y. S. Cheng,, T. D. Holmes,, J. Gao,, R. A. Guilmette,, S. Li,, Y. Surakitbanharn,, C. Rowlings, 2001. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J Aerosol Med, 14: 267-280.
 
Y. S. Cheng,, H. C. Yeh,, M. D. Allen, 1988. Dynamic shape factor of a plate-like particle. Aerosol Sci Tech, 8: 109-123.
 
R. P. Chhabra,, T. Singh,, S. Nandrajog, 1995. Drag on chains and agglomerates of spheres in viscous Newtonian and power law fluids. Can J Chem Eng, 73: 566-571.
 
B. Cichocki,, K. Hinsen, 1995. Stokes drag on conglomerates of spheres. Phys Fluids, 7: 285-291.
 
Y. Cui,, J. Ravnik,, M. Hriberšek,, P. Steinmann, 2018. A novel model for the lift force acting on a prolate spheroidal particle in an arbitrary non-uniform flow. Part I. Lift force due to the streamwise flow shear. Int J Multiphase Flow, 104: 103-112.
 
E. Cunningham, 1910. On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond A, 83: 357-365.
 
B. E. Dahneke, 1973. Slip correction factors for nonspherical bodies—III the form of the general law. J Aerosol Sci, 4: 163-170.
 
A. Dastan,, O. Abouali,, G. Ahmadi, 2014. CFD simulation of total and regional fiber deposition in human nasal cavities. J Aerosol Sci, 69: 132-149.
 
A. Einstein, 1905. On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat. Annalen der Physik, 17: 549-560.
 
A. D. Eisner,, I. Gallily, 1981. On the stochastic nature of the motion of nonspherical aerosol particles. J Colloid Interface Sci, 81: 214-233.
 
EPA. 2003. Report on the peer consultation workshop to discuss a proposed protocol to assess asbestos-related risk, final report. Office of Solid Waste and Emergency Response, Washington D.C.
 
P. S. Epstein, 1924. On the resistance experienced by spheres in their motion through gases. Phys Rev, 23: 710-733.
 
F. G. Fan,, G. Ahmadi, 1995a. A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J Aerosol Sci, 26: 813-840.
 
F. G. Fan,, G. Ahmadi, 1995b. Dispersion of ellipsoidal particles in an isotropic pseudo-turbulent flow field. J Fluid Eng, 117: 154-161.
 
F. G. Fan,, G. Ahmadi, 2000. Wall deposition of small ellipsoids from turbulent air flows—a Brownian dynamics simulation. J Aerosol Sci, 31: 1205-1229.
 
F. G. Fan,, M. Soltani,, G. Ahmadi,, S. C. Hart, 1997. Flow-induced resuspension of rigid-link fibers from surfaces. Aerosol Sci Tech, 27: 97-115.
 
Y. Feng,, C. Kleinstreuer, 2013. Analysis of non-spherical particle transport in complex internal shear flows. Phys Fluids, 25: 091904.
 
I. Gallily,, A. H. Cohen, 1979. On the orderly nature of the motion of nonspherical aerosol particles. II. Inertial collision between a spherical large droplet and an axially symmetrical elongated particle. J Colloid Interf Sci, 68: 338-356.
 
R. Gans, 1928. Zur Theorie der Brownschen Molekularbewegung. Ann Phys, 391: 628-656.
 
G. J. M. Garcia,, E. W. Tewksbury,, B. A. Wong,, J. S. Kimbell, 2009. Interindividual variability in nasal filtration as a function of nasal cavity geometry. J Aerosol Med Pulm D, 22: 139-156.
 
H. Goldstein, 1980. Classical Mechanics, 2nd edn. Addison-Wesley.
 
X. H. Guo,, J. Z. Lin,, D. M. Nie, 2011. New formula for drag coefficient of cylindrical particles. Particuology, 9: 114-120.
 
D. Gupta,, M. H. Peters, 1985. A Brownian dynamics simulation of aerosol deposition onto spherical collectors. J Colloid Interf Sci, 104: 375-389.
 
A. Haider,, O. Levenspiel, 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol, 58: 63-70.
 
J. Happel,, H. Brenner, 1973. Low Reynolds Number Hydrodynamics. Leyden: Noordhoff.
 
E. Y. Harper,, I. D. Chang, 1968. Maximum dissipating resulting from lift in a slow viscous flow. J Fluid Mech, 33: 209-225.
 
T. W. Hesterberg,, R. Anderson,, D. M. Bernstein,, W. B. Bunn,, G. A. Chase,, A. L. Jankousky,, G. M. Marsh,, R. O. McClellan, 2012. Product stewardship and science: Safe manufacture and use of fiber glass. Regul Toxicol Pharm, 62: 257-277.
 
J. O. Hinze, 1975. Turbulence, 2nd edn. New York: McGraw-Hill.
 
A. Hölzer,, M. Sommerfeld, 2009. Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput Fluids, 38: 572-589.
 
H. Horvath, 1974. The sedimentation behavior of non-spherical particles. Staub Reinhalt Luft, 34: 197-202.
 
J. M. Hughes,, R. N. Jones,, H. W. Glindmeyer,, Y. Y. Hammad,, H. Weill, 1993. Follow up study of workers exposed to man made mineral fibres. Occup Environ Med, 50: 658-667.
 
P. C. Hughes, 1986. Spacecraft Attitude Dynamics. New York: Wiley.
 
T. J. R. Hughes,, A. A. O. Oberai,, L. Mazzei, 2001. Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids, 13: 1784-1799.
 
International Agency for Research on Cancer (IARC). 2002. IARC monographs on the evaluation of carcinogenic risks to humans. man-made vitreous fibres. IARC, Lyon, 81: 1-418.
 
K. Inthavong,, J. Wen,, Z. F. Tian,, J. Y. Tu, 2008. Numerical study of fibre deposition in a human nasal cavity. J Aerosol Sci, 39: 253-265.
 
N. Invernizzi, 2011. Nanotechnology between the lab and the shop floor: What are the effects on labor? J Nanopart Res, 13: 2249-2268.
 
G. B. Jeffery, 1922. The motion of ellipsoidal particles immersed in a viscous fluid. P Roy Soc A, 102: 161-179.
 
J. T. Kelly,, B. C. Asgharian,, J. S. Kimbell,, B. A. Wong, 2004. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: inertial regime particles. Aerosol Sci Tech, 38: 1063-1071.
 
W. Kvasnak,, G. Ahmadi, 1996. Deposition of ellipsoidal particles in turbulent duct flows. Chem Eng Sci, 51: 5137-5148.
 
C.-W. Lam,, J. T. James,, R. McClusjey,, R. L. Hunter, 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxical Sci, 77: 126-134.
 
I. A. Lasso,, P. D. Weidman, 1986. Stokes drag on hollow cylinders and conglomerates. Phys Fluids, 29: 3921-3934.
 
B. E. Launder,, G. J. Reece,, W. Rodi, 1975. Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech, 68: 537-566.
 
G. K. LeMasters,, J. E. Lockey,, J. H. Yiin,, T. J. Hilbert,, L. S. Levin,, C. H. Rice, 2003. Mortality of workers occupationally exposed to refractory ceramic fibers. J Occup Environ Med, 45: 440-450.
 
K. Li,, H. L. Ma, 2018. Deposition dynamics of rod-shaped colloids during transport in porous media under favorable conditions. Langmuir, 34: 2967-2980.
 
M. Lippmann, 1988. Asbestos exposure indices. Environ Res, 46: 86-106.
 
M. Lippmann, 2014. Toxicological and epidemiological studies on effects of airborne fibers: Coherence and public health implications. Crit Rev Toxicol, 44: 643-695.
 
S. Luo,, J. Wang,, S. Yu,, G. D. Xia,, Z. G. Li, 2018. Shear lift forces on nanocylinders in the free molecule regime. J Fluid Mech, 846: 392-410.
 
L. Ma-Hock,, S. Treumann,, V. Strauss,, S. Brill,, F. Luizi,, M. Mertler,, K. Wiench,, A. O. Gamer,, B. van Ravenzwaay,, R. Landsiedel, 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci, 112: 468-481.
 
G. M. Marsh,, J. M. Buchanich,, A. O. Youk, 2001. Historical cohort study of US man-made vitreous fiber production workers: VI. respiratory system cancer standardized mortality ratios adjusted for the confounding effect of cigarette smoking. J Occup Environ Med, 43: 803-808.
 
J. S. McNown,, J. Malaika, 1950. Effects of particle shape on settling velocity at low Reynolds numbers. Eos Trans AGU, 31: 74-82.
 
R. R. Mercer,, A. F. Hubbs,, J. F. Scabilloni,, L. Wang,, L. A. Battelli,, S. Friend,, V. Castranova,, D. W. Porter, 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol, 8: 21.
 
R. R. Mercer,, J. Scabilloni,, L. Wang,, E. Kisin,, A. R. Murray,, D. Schwegler-Berry,, A. A. Shvedova,, V. Castranova, 2008. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol-Lung C, 294: L87-L97.
 
P. Moin,, K. Mahesh, 1998. DIRECT NUMERICAL SIMULATION: A tool In turbulence research. Ann Rev Fluid Mech, 30: 539-578.
 
R. D. Moser,, J. Kim,, N. N. Mansour, 1999. Direct numerical simulation of turbulent channel flow up to Reτ=590. Phys Fluids, 11: 943-945.
 
J. Muller,, F. Huaux,, N. Moreau,, P. Misson,, J. F. Heilier,, M. Delos,, M. Arras,, A. Fonseca,, J. B. Nagy,, D. Lison, 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacoly, 207: 221-231.
 
F. A. Murphy,, C. A. Poland,, R. Duffin,, K. T. Al-Jamal,, H. Ali-Boucetta,, A. Nunes,, F. Byrne,, A. Prina-Mello,, Y. Volkov,, S. Li,, et al. 2011. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol, 178: 2587-2600.
 
A. R. Murray,, E. R. Kisin,, A. V. Tkach,, N. Yanamala,, R. Mercer,, S. H. Young,, B. Fadeel,, V. E. Kagan,, A. A. Shvedova, 2012. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol, 9: 10.
 
G. D. Nielsen,, I. K. Koponen, 2018. Insulation fiber deposition in the airways of men and rats. A review of experimental and computational studies. Regul Toxicol Pharm, 94: 252-270.
 
NIOSH. 1990. Comments of the National Institute for Occupational Safety and Health on the Occupational Safety and Health Administration’s Notice of Proposed Rulemaking on Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite. OSHA Docket no. H-033d, April 9, 1990.
 
NIOSH. 2008. Strategic plan for NIOSH nanotechnology research and guidance: Filling the knowledge gaps. Available at https://stacks.cdc.gov/view/cdc/5481.
 
D. O. Njobuenwu,, M. Fairweather, 2014. Effect of shape on inertial particle dynamics in a channel flow. Flow Turbul Combust, 92: 83-101.
 
D. O. Njobuenwu,, M. Fairweather, 2015. Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow. Chem Eng Sci, 123: 265-282.
 
D. O. Njobuenwu,, M. Fairweather, 2017. Large eddy simulation of inertial fiber deposition mechanisms in a vertical downward turbulent channel flow. AIChE J, 63: 1451-1465.
 
A. J. Oberbeck, 1876. Ueber stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inneren Reibung. Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 1876: 62-80.
 
C. W. Oseen, 1927. Hydrodynamik. Leipzig: Akademische Verlagsgesellshaf.
 
R. Ouchene,, M. Khalij,, B. Arcen,, A. Tanière, 2016. A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol, 303: 33-43.
 
H. Ounis,, G. Ahmadi,, J. B. McLaughlin, 1991. Brownian diffusion of submicrometer particles in the viscous sublayer. J Colloid Interf Sci, 143: 266-277.
 
R. E. Pattle, 1961. The retention of gases and particles in the human nose. In: Inhaled Particles and Vapors. C. N. Davies, ed. Oxford, UK: Pergamon Press.
 
C. A. Poland,, R. Duffin,, I. Kinloch,, A. Maynard,, W. A. H. Wallace,, A. Seaton,, V. Stone,, S. Brown,, W. MacNee,, K. Donaldson, 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotech, 3: 423-428.
 
D. W. Porter,, A. F. Hubbs,, R. R. Mercer,, N. Wu,, M. G. Wolfarth,, K. Sriram,, S. Leonard,, L. Battelli,, D. Schwegler-Berry,, S. Friend, 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology, 269: 136-147.
 
F. Pott,, U. Ziem,, F. J. Reiffer,, F. Huth,, H. Ernst,, U. Mohr, 1987. Carcinogenicity studies on fibres, metal compounds, and some other dusts in rats. Exp Pathol, 32: 129-152.
 
P. G. Saffman, 1965. The lift on a small sphere in a slow shear flow. J Fluid Mech, 22: 385-400.
 
M. K. Schubauer-Berigan,, M. M. Dahm,, M. S. Yencken, 2011. Engineered carbonaceous nanomaterials manufacturers in the United States. J Occup Environ Med, 53: S62-S67.
 
R. F. Service, 1998. Nanotubes: The next asbestos? Science, 281: 941.
 
K. T. Shanley,, G. Ahmadi,, P. K. Hopke,, Y. S. Cheng, 2018. Simulated airflow and rigid fiber behavior in a realistic nasal airway model. Particul Sci Technol, 36: 131-140.
 
K. T. Shanley,, P. Zamankhan,, G. Ahmadi,, P. K. Hopke,, Y. S. Cheng, 2008. Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. Inhal Toxicol, 20: 1093-1100.
 
M. Shapiro,, M. Goldenberg, 1993. Deposition of glass fiber particles from turbulent air flow in a pipe. J Aerosol Sci, 24: 65-87.
 
L. Simonato,, A. C. Fletcher,, J. W. Cherrie,, A. Andersen,, P. Bertazzi,, N. Charnay,, J. Claude,, J. Dodgson,, J. Esteve,, R. Frentzel-Beyme,, et al. 1987. The international agency for research on cancer historical cohort study of MMMF production workers in seven European countries: Extension of the follow-up. Ann Occup Hyg, 31: 603-623.
 
W. Stöber, 1972. Dynamic shape factors of nonspherical aerosol particles. In: Assessment of Airborne Particles. T. Mercer,, et al. Eds. Springfield, IL: Charles C. Thomas: 249-289.
 
G. G. Stokes, 1851. On the effect of internal friction of fluids on the motion of pendulums. Trans Cam Phil Soc, 9: 8-106.
 
W. C. Su,, Y.-S. Cheng, 2005. Deposition of fiber in the human nasal airway. Aerosol Sci Tech, 39: 888-901.
 
M. M. Tavakol,, O. Abouali,, M. Yaghoubi,, G. Ahmadi, 2015. Dispersion and deposition of ellipsoidal particles in a fully developed laminar pipe flow using non-creeping formulations for hydrodynamic forces and torques. Int J Multiphase Flow, 75: 54-67.
 
M. M. Tavakol,, E. Ghahramani,, O. Abouali,, M. Yaghoubi,, G. Ahmadi, 2017. Deposition fraction of ellipsoidal fibers in a model of human nasal cavity for laminar and turbulent flows. J Aerosol Sci, 113: 52-70.
 
L. Tian,, G. Ahmadi, 2013. Fiber transport and deposition in human upper tracheobronchial airways. J Aerosol Sci, 60: 1-20.
 
L. Tian,, G. Ahmadi, 2016a. On nano-ellipsoid transport and deposition in the lung first bifurcation-effect of slip correction. J Fluid Eng, 138: 101101.
 
L. Tian,, G. Ahmadi, 2016b. Transport and deposition of nano-fibers in human upper tracheobronchial airways. J Aerosol Sci, 91: 22-32.
 
L. Tian,, G. Ahmadi,, J. Tu, 2016. Brownian diffusion of fibers. Aerosol Sci Tech, 50: 474-486.
 
L. Tian,, G. Ahmadi,, J. Y. Tu, 2017. Mobility of nanofiber, nanorod, and straight-chain nanoparticles in gases. Aerosol Sci Tech, 51: 587-601.
 
L. Tian,, G. Ahmadi,, Z. C. Wang,, P. K. Hopke, 2012. Transport and deposition of ellipsoidal fibers in low Reynolds number flows. J Aerosol Sci, 45: 1-18.
 
L. Tian,, K. Inthavong,, G. Lidén,, Y. D. Shang,, J. Y. Tu, 2016. Transport and deposition of welding fume agglomerates in a realistic human nasal airway. Ann Occup Hyg, 60: 731-747.
 
S. Tran-Cong,, M. Gay,, E. E. Michaelides, 2004. Drag coefficients of irregularly shaped particles. Powder Technol, 139: 21-32.
 
G. E. Uhlenbeck,, L. S. Ornstein, 1930. On the theory of the Brownian motion. Phys Rev, 36: 823-841.
 
C. J. Wagner, 1986. Mesothelioma and mineral fibers, accomplishments in cancer research 1985 prize year. General Motors Cancer Research Foundation: 60-72.
 
Z. C. Wang,, P. K. Hopke,, G. Ahmadi,, Y.-S. Cheng,, P. A. Baron, 2008. Fibrous particle deposition in human nasal passage: The influence of particle length, flow rate, and geometry of nasal airway. J Aerosol Sci, 39: 1040-1054.
 
D. C. Wilcox, 2006. Turbulence Modeling for CFD, 3rd edn. DCW Industries.
 
C. Yin,, L. Rosendahl,, S. K. Kær,, T. J. Condra, 2004. Use of numerical modeling in design for co-firing biomass in wall-fired burners. Chem Eng Sci, 59: 3281-3292.
 
M. Zastawny,, G. Mallouppas,, F. Zhao,, B. van Wachem, 2012. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Int J Multiphase Flow, 39: 227-239.
 
H. F. Zhang,, G. Ahmadi,, F. G. Fan,, J. B. McLaughlin, 2001. Ellipsoidal particles transport and deposition in turbulent channel flows. Int J Multiphase Flow, 27: 971-1009.
 
Y. Zhou,, W.-C. Su,, Y. S. Cheng, 2007. Fiber deposition in the tracheabronhical region: Experimental measurements. Inhal Toxicol, 19: 1071-1078.
Experimental and Computational Multiphase Flow
Pages 1-20
Cite this article:
Tian L, Ahmadi G. Computational modeling of fiber transport in human respiratory airways—A review. Experimental and Computational Multiphase Flow, 2021, 3(1): 1-20. https://doi.org/10.1007/s42757-020-0061-7

806

Views

12

Crossref

11

Web of Science

13

Scopus

Altmetrics

Received: 14 January 2020
Accepted: 14 February 2020
Published: 11 March 2020
© Tsinghua University Press 2020
Return