AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Slug length and frequency upstream a sudden expansion in gas- liquid intermittent flow

A. H. Zitouni1A. Arabi2,3( )Y. Salhi3Y. Zenati3E. K. Si-Ahmed4J. Legrand4
Research Center in Industrial Technologies CRTI P.O.BOX 64, Cheraga 16014 Algiers, Algeria
SONATRACH, Direction Centrale Recherche et Développement, Avenue 1er Novembre, 35000, Boumerdes, Algeria
University of Sciences and Technology Houari Boumediene USTHB, Physics’ Faculty Laboratory of Theoretical and Applied Fluid Mechanics, LMFTA, BP 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria
University of Nantes, ONIRIS, CNRS, GEPEA, CNRS, UMR-6144, 37 Bd de l’université BP406, 44602 Saint-Nazaire, France
Show Author Information

Abstract

The purpose of this work is to analyze the influence of a sudden expansion on the upstream behavior of the horizontal gas-liquid slug flow. Measurements were made on a 40 mm ID pipe with and without a sudden enlargement of aspect ratio σ = 0.444. The experiments were carried out with two-phase air-water mixture. The slug lengths and frequencies were measured using a non-intrusive video technique. Upstream the sudden enlargement, it was observed that the mixture velocity has no influence on slug length. The variation of slug frequency is found proportional to the liquid superficial velocity for the two cases within this study. It was also observed that the behavior of the slug length and frequency was affected by the presence of the sudden enlargement. The comparison of the results obtained with various empirical correlations available in the literature showed that the latter are not worthwhile in the case where singularity is installed.

References

 
L. A. Abdulkareem, 2011. Tomographic investigation of gas-oil flow in inclined risers. Dissertation. University of Nottingham, Nottingham, UK.
 
H. H. Al-Kayiem,, A. O. Mohmmed,, Z. I. Al-Hashimy,, R. W. Time, 2017. Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe. Int J Heat Mass Tran, 105: 252-260.
 
E. Al-Safran,, B. Gokcal,, C. Sarica, 2011. High viscosity liquid effect on two-phase slug length in horizontal pipes. In: Proceedings of the 15th International Conference on Multiphase Production Technology.
 
P. Andreussi,, K. Bendiksen, 1989. An investigation of void fraction in liquid slugs for horizontal and inclined gas-liquid pipe flow. Int J Multiphase Flow, 15: 937-946.
 
A. Arabi, 2019. Contribution à l’étude du comportement d’un écoulement diphasique dans une conduite en présence d’une singularité. Doctoral Dissertation. USTHB, Algiers, Algeria.
 
A. Arabi,, Y. Salhi,, E. K. Si-Ahmed,, J. Legrand, 2018. Influence of a sudden expansion on slug flow characteristics in a horizontal two-phase flow: A pressure drop fluctuations analysis. Meccanica, 53: 3321-3338.
 
A. Arabi,, Y. Salhi,, Y. Zenati,, E. K. Si-Ahmed,, J. Legrand, 2020. On gas-liquid intermittent flow in a horizontal pipe: Influence of sub-regime on slug frequency. Chem Eng Sci, 211: 115251.
 
A. Archibong-Eso,, Y. Baba,, A. Aliyu,, Y. Zhao,, W. Yan,, H. Yeung, 2018. On slug frequency in concurrent high viscosity liquid and gas flow. J Petrol Sci Eng, 163: 600-610.
 
B. J. Azzopardi,, A. Ijioma,, S. Yang,, L. A. Abdulkareem,, A. Azzi,, M. Abdulkadir, 2014. Persistence of frequency in gas-liquid flows across a change in pipe diameter or orientation. Int J Multiphase Flow, 67: 22-31.
 
D. Barnea,, O. Shoham,, Y. Taitel,, A. E. Dukler, 1980. Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory. Int J Multiphase Flow, 6: 217-225.
 
K. H. Bendiksen,, D. Malnes, 1987. Experimental data on inlet and outlet effects on the transition from stratified to slug flow in horizontal tubes. Int J Multiphase Flow, 13: 131-135.
 
V. Bertola, 2002. Optical probe visualization of air-water flow structure through a sudden area contraction. Exp Fluids, 32: 481-486.
 
V. Bertola,, F. Moschella, 2003. Slug velocity and liquid layer thickness before an abrupt contraction in horizontal gas-liquid flow. Exp Fluids, 34: 150-153.
 
J. P. Brill,, Z. Schmidt,, W. A. Coberly,, J. D. Herring,, D. W. Moore, 1981. Analysis of two-phase tests in large-diameter flow lines in Prudhoe Bay field. Soc Petrol Eng J, 21: 363-378.
 
M. Cook,, M. Behnia, 2000. Slug length prediction in near horizontal gas-liquid intermittent flow. Chem Eng Sci, 55: 2009-2018.
 
N. Da Costa Maidana,, E. S. Rosa, 2018. Flow disturbances induced by an orifice plate in a horizontal air-water flow in the slug regime. Exp Therm Fluid Sci, 94: 59-76.
 
A. E. Dukler,, M. G. Hubbard, 1975. A model for gas-liquid slug flow in horizontal and near horizontal tubes. Ind Eng Chem Fund, 14: 337-347.
 
M. Fossa,, G. Guglielmini,, A. Marchitto, 2003. Intermittent flow parameters from void fraction analysis. Flow Meas Instrum, 14: 161-168.
 
M. Fossa,, G. Guglielmini,, A. Marchitto, 2006. Two-phase flow structure close to orifice contractions during horizontal intermittent flows. Int Commun Heat Mass, 33: 698-708.
 
I. C. Gordon, 1987. Multi-phase pipeline and equipment design for marginal and deep water field development. In: Proceedings of the 3rd International Conference on Multi-Phase Flow.
 
G. A. Gregory,, D. S. Scott, 1969. Correlation of liquid slug velocity and frequency in horizontal cocurrent gas-liquid slug flow. AIChE J, 15: 933-935.
 
E. J. Greskovich,, A. L. Shrier, 1972. Slug frequency in horizontal gas-liquid slug flow. Ind Eng Chem Proc DD, 11: 317-318.
 
V. Hernandez Perez, 2008. Gas-liquid two-phase flow in inclined pipes. Doctoral Dissertation. University of Nottingham, Nottingham, UK.
 
N. I. Heywood,, J. F. Richardson, 1979. Slug flow of air-water mixtures in a horizontal pipe: Determination of liquid holdup by γ-ray absorption. Chem Eng Sci, 34: 17-30.
 
T. Hibiki, 2019. One-dimensional drift-flux correlations for two-phase flow in medium-size channels. Exp Comput Multiph Flow, 1: 85-100.
 
M. Ishii,, T. Hibiki, 2010. Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. Springer Science & Business Media.
 
W. P. Jepson,, R. E. Taylor, 1993. Slug flow and its transitions in large-diameter horizontal pipes. Int J Multiphase Flow, 19: 411-420.
 
I. G. Manolis,, M. A. Mendes-Tatsis,, G. F. Hewitt, 1995. The effect of pressure on slug frequency in two-phase horizontal flow. In: Multiphase Flow 1995. A. Serizawa,, T. Fukano,, J. Bataille, Eds. Elsevier, 347-354.
 
S. Miwa,, T. Hibiki, 2020. State-of-the-art in plant component flow- induced vibration (FIV). Exp Comput Multiph Flow, 2: 1-12.
 
A. O. Mohmmed,, H. H. Al-Kayiem,, M. S. Nasif,, R. W. Time, 2019. Effect of slug flow frequency on the mechanical stress behavior of pipelines. Int J Pres Ves Pip, 172: 1-9.
 
M. K. Nicholson,, K. Aziz,, G. A. Gregory, 1978. Intermittent two phase flow in horizontal pipes: Predictive models. Can J Chem Eng, 56: 653-663.
 
L. Norris, 1982. Correlation of Prudhoe Bay liquid slug lengths and holdups including 1981 large diameter flow line tests. Exxon Production Research Co., Houston, TX, USA.
 
O. J. Nydal, 1991. An experimental investigation on slug flow. Doctoral Dissertation. Univesity of Oslo, Norway.
 
F. Saidj,, R. Kibboua,, A. Azzi,, N. Ababou,, B. J. Azzopardi, 2014. Experimental investigation of air-water two-phase flow through vertical 90° bend. Exp Therm Fluid Sci, 57: 226-234.
 
Y. Salhi, 2010. Contribution théorique et expérimentale à l'étude des phénomènes de transition d'un écoulement stratifié à l'écoulement poche/bouchon dans une conduite horizontale en présence de singularité. Doctoral Dissertation. USTHB, Algiers, Algeria.
 
Y. Salhi,, E. K. Si-Ahmed,, J. Legrand,, G. Degrez, 2010. Stability analysis of inclined stratified two-phase gas-liquid flow. Nucl Eng Des, 240: 1083-1096
 
Y. Salhi,, E. K. Si-Ahmed,, J. Legrand,, J. M. Rosant, 2011. Etude expérimentale de l'influence d'une singularité sur le régime d'écoulement diphasique gaz-liquide en conduite horizontale : cas de l'élargissement brusque. In: Congrès français de mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc, 92400 Courbevoie, France.
 
S. L. Scott,, O. Shoham,, J. P. Brill, 1989. Prediction of slug length in horizontal, large-diameter pipes. SPE Production Engineering, 4: 335-340.
 
Y. Taitel,, D. Barnea, 1990. Two-phase slug flow. Adv Heat Tran, 20: 83-132.
 
J. Thaker,, J. Banerjee, 2016a. Influence of intermittent flow sub- patterns on erosion-corrosion in horizontal pipe. J Petrol Sci Eng, 145: 298-320.
 
J. Thaker,, J. Banerjee, 2016b. On intermittent flow characteristics of gas-liquid two-phase flow. Nucl Eng Des, 310: 363-377.
 
J. Thaker,, J. Banerjee, 2017. Transition of plug to slug flow and associated fluid dynamics. Int J Multiphase Flow, 91: 63-75.
 
X. Wang,, L. Guo,, X. Zhang, 2007. An experimental study of the statistical parameters of gas-liquid two-phase slug flow in horizontal pipeline. Int J Heat Mass Tran, 50: 2439-2443.
 
G. J. Zabaras, 2000. Prediction of slug frequency for gas/liquid flows. SPE J, 5: 252-258.
 
D Zhang,, A. Goharzadeh, 2019. Effect of sudden expansion on two-phase flow in a horizontal pipe. Fluid Dyn, 54: 123-136.
Experimental and Computational Multiphase Flow
Pages 124-130
Cite this article:
Zitouni AH, Arabi A, Salhi Y, et al. Slug length and frequency upstream a sudden expansion in gas- liquid intermittent flow. Experimental and Computational Multiphase Flow, 2021, 3(2): 124-130. https://doi.org/10.1007/s42757-020-0068-0

648

Views

19

Crossref

16

Web of Science

17

Scopus

Altmetrics

Received: 05 December 2019
Revised: 02 April 2020
Accepted: 04 April 2020
Published: 23 May 2020
© Tsinghua University Press 2020
Return