AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Complex bubble deformation and break-up dynamics studies using interface capturing approach

Yuqiao Fan1Jun Fang2Igor Bolotnov1( )
Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695, USA
Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
Show Author Information
An erratum to this article is available online at:

Abstract

The dynamics of bubble deformation has significant impacts on two-phase flow fundamentals such as bubble induced turbulence and flow regime transition. Despite the significant progress achieved by experimental studies on bubble deformation, certain limitations still exist especially for wide-range datasets. To significantly expand the flow conditions available from experiments, direct numerical simulation (DNS) is utilized to study the bubble-liquid interactions using finite- element solver with level-set interface capturing method. Different from conventional investigations of bubble rising and deforming in stagnant liquids, a proportional-integral-derivative (PID) bubble controller is leveraged to maintain the bubble location in uniform liquid flow. This paper evaluates the reliability and reproducibility of the PID bubble controller for complex bubble deformation studies through a comprehensive set of verification and validation studies. An improved bubble deformation map is developed, based on Weber number and bubble Reynolds number, showing six zones for different deformation and break-up mechanisms. This research aims at producing virtual experiment level data source using interface resolved DNS and shedding light into the physics of interface dynamics. The insights obtained can be further incorporated in improved multiphase CFD models to guide the engineering designs and industrial processes where bubble deformation and break-up play a pivotal role.

References

 
F. Behafarid,, K. Jansen,, M. Podowski, 2015. A study on large bubble motion and liquid film in vertical pipes and inclined narrow channels. Int J Multiphase Flow 75: 288-299.
 
D. Bhaga,, M. E. Weber, 1981. Bubbles in viscous liquids: Shapes, wakes and velocities. J Fluid Mech, 105: 61-85.
 
A. M. Dueñas, 2019. Investigation of drag coefficient and virtual mass coefficient on rising ellipsoidal bubbles. Master Thesis. Nuclear Engineering Department, Oregon State University, USA.
 
C. J. Ejeh,, E. A. Boah,, G. P. Akhabue,, C. C. Onyekperem,, J. I. Anachuna,, I. Agyebi, 2020. Computational fluid dynamic analysis for investigating the influence of pipe curvature on erosion rate prediction during crude oil production. Exp Comput Multiph Flow, 2: 255-272.
 
J. Fang,, J. J. Cambareri,, C. S. Brown,, J. Feng,, A. Gouws,, M. Li,, I. A. Bolotnov, 2018. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing. Nucl Eng Des, 330: 409-419.
 
J. Fang,, J. J. Cambareri,, M. Li,, N. Saini,, I. A. Bolotnov, 2020. Interface-resolved simulations of reactor flows. Nucl Technol, 206: 133-149.
 
J. Fang,, M. Rasquin,, I. A. Bolotnov, 2017. Interface tracking simulations of bubbly flows in PWR relevant geometries. Nucl Eng Des, 312: 205-213.
 
J. Feng,, I. A. Bolotnov, 2017a. Evaluation of bubble-induced turbulence using direct numerical simulation. Int J Multiphase Flow, 93: 92-107.
 
J. Feng,, I. A. Bolotnov, 2017b. Interfacial force study on a single bubble in laminar and turbulent flows. Nucl Eng Des, 313: 345-360.
 
J. Feng,, I. A. Bolotnov, 2018. Effect of the wall presence on the bubble interfacial forces in a shear flow field. Int J Multiphase Flow, 99: 73-85.
 
R. A. Gore,, C. T. Crowe, 1989. Effect of particle size on modulating turbulent intensity. Int J Multiphase Flow, 15: 279-285.
 
D. P. Guillen,, J. Cambareri,, A. W. Abboud,, I. A. Bolotnov, 2018. Numerical comparison of bubbling in a waste glass melter. Ann Nucl Energ, 113: 380-392.
 
M. Ishii,, S. S. Paranjape,, S. Kim,, X. Sun, 2004. Interfacial structures and interfacial area transport in downward two-phase bubbly flow. Int J Multiphase Flow, 30: 779-801.
 
W. D. McComb, 1999. Dynamics and Relativity. Oxford University Press.
 
S. Nagrath,, K. E. Jansen,, R. T. Lahey, Jr. 2005. Computation of incompressible bubble dynamics with a stabilized finite element level set method. Comput Methods Appl Mech Eng, 194: 4565-4587.
 
S. Nagrath,, K. Jansen,, R. T. Lahey, Jr., I. Akhatov, 2006. Hydrodynamic simulation of air bubble implosion using a level set approach. J Comput Phys, 215: 98-132.
 
S. Popinet, 2003. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys, 190: 572-600.
 
A. Prosperetti,, G. Tryggvason, 2007. Computational Methods for Multiphase Flow. Cambridge University Press.
 
P. J. Roache, 1998. Verification and Validation in Computational Science and Engineering. Albuquerque, NM, USA: Hermosa Publishers.
 
J. M. Rodriguez,, O. Sahni,, R. T. Lahey, Jr., K. E. Jansen, 2013. A parallel adaptive mesh method for the numerical simulation of multiphase flows. Comput Fluids, 87: 115-131.
 
D. M. Sharaf,, A. R. Premlata,, M. K. Tripathi,, B. Karri,, K. C. Sahu, 2017. Shapes and paths of an air bubble rising in quiescent liquids. Phys Fluids, 29: 122104.
 
M. Sussman,, E. Fatemi,, P. Smereka,, S. Osher, 1998. An improved level set method for incompressible two-phase flows. Comput Fluids, 27: 663-680.
 
M. Sussman,, K. M. Smith,, M. Y. Hussaini,, M. Ohta,, R. Zhi-Wei, 2007. A sharp interface method for incompressible two-phase flows. J Comput Phys, 221: 469-505.
 
A. M. Thomas,, J. Fang,, J. Feng,, I. A. Bolotnov, 2015. Estimation of shear-induced lift force in laminar and turbulent flows. Nucl Technol, 190: 274-291.
 
M. K. Tripathi,, K. C. Sahu,, R. Govindarajan, 2015. Dynamics of an initially spherical bubble rising in quiescent liquid. Nat Commun, 6: 6268.
 
M. B. Utomo,, W. Warsito,, T. Sakai,, S. Uchida, 2001. Analysis of distributions of gas and TiO2 particles in slurry bubble column using ultrasonic computed tomography. Chem Eng Sci, 56: 6073-6079.
 
Z. Wang,, K. Dong,, L. Tian,, J. Wang,, J. Tu, 2018. Numerical study on coalescence behavior of suspended drop pair in viscous liquid under uniform electric field. AIP Adv, 8: 085215.
 
C. H. Whiting,, K. E. Jansen, 2001. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int J Numer Methods Fluids, 35: 93-116.
 
A. Yamatake,, H. Katayama,, K. Yasuoka,, S. Ishii, 2007. Water purification by atmospheric DC/pulsed plasmas inside bubbles in water. Int J Plasma Environ Sci Technol, 1: 91-95.
 
M. D. Zimmer,, I. A. Bolotnov, 2019. Slug-to-churn vertical two-phase flow regime transition study using an interface tracking approach. Int J Multiphase Flow, 115: 196-206.
Experimental and Computational Multiphase Flow
Pages 139-151
Cite this article:
Fan Y, Fang J, Bolotnov I. Complex bubble deformation and break-up dynamics studies using interface capturing approach. Experimental and Computational Multiphase Flow, 2021, 3(3): 139-151. https://doi.org/10.1007/s42757-020-0073-3

1465

Views

13

Crossref

20

Web of Science

19

Scopus

Altmetrics

Received: 29 February 2020
Revised: 22 April 2020
Accepted: 25 April 2020
Published: 18 July 2020
© Tsinghua University Press 2020
Return