Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

A Modified Normalized Weighting Factor method for improving the efficiency of the blended high-resolution advection schemes in the context of multiphase flows

Jessica Mariño-Salguero1,2()Michael Schäfer1,2
Institute of Numerical Methods in Mechanical Engineering (FNB), Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt, Germany
Graduate School of Computational Engineering, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt, Germany
Show Author Information

Abstract

This work deals with a new methodology for the implementation of high-resolution (HR) schemes employed to advect the volume fraction in the volume of fluid (VOF) method, in which the numerical stability and convergence depend heavily on the numerical advection scheme and implementation method. The proposed method is based on the normalized weighting factor (NWF) method, which linearizes the normalized interpolation profile and rewrites the face value directly using the donor, acceptor, and upwind nodes. However, unlike the NWF, which is fully implicit and results in pentadiagonal linear systems, the new modified normalized weighting factor (MNWF) method only forms the implicit terms with the contribution of the donor and acceptor nodes, while the contribution of the upwind node explicitly forms part of the source term. Therefore, the method results in a tridiagonal linear system. The comparison of the new method with the deferred correction (DC), downwind weighting factor (DWF), and the RNWF methods shows that the MNWF requires about 5%-25% fewer iterations than DC and RNWF, and around 10%-85% less than DWF. Thus, a similar order of accuracy of the results can be obtained with less computational time.

References

 
T. Chourushi, 2018. Computationally inexpensive and revised normalized weighting factor method for segregated solvers. Int J Comput Math, 95: 1622-1653.
 
M. S. Darwish,, F. Moukalled, 1996. The normalized weighting factor method: A novel technique for accelerating the convergence of high-resolution convective schemes. Numer Heat Tr B: Fund, 30: 217-237.
 
M. Darwish,, F. Moukalled, 2006. Convective schemes for capturing interfaces of free-surface flows on unstructured grids. Numer Heat Tr B: Fund, 49: 19-42.
 
J. H. Ferziger,, M. Perić, 2012. Computational Methods for Fluid Dynamics, 3rd edn. Springer-Verlag Berlin Heidelberg.
 
P. H. Gaskell,, A. K. C. Lau, 1988. Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm. Int J Numer Meth Fl, 8: 617-641.
 
C. W. Hirt,, B. D. Nichols, 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Physs, 39: 201-225.
 
P. W. Hogg,, X. J. Gu,, D. R. Emerson, 2006. An implicit algorithm for capturing sharp fluid interfaces in the volume of fluid advection method. In: Proceedings of the European Conference on Computational Fluid Dynamics.
 
S. Hysing,, S. Turek,, D. Kuzmin,, N. Parolini,, E. Burman,, S. Ganesan,, L. Tobiska, 2009. Quantitative benchmark computations of two-dimensional bubble dynamics. Int J Numer Meth Fl, 60: 1259-1288.
 
S. Koshizuka, 1995. A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Dyn J, 4(29).
 
B. P. Leonard, 1991. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput Method Appl M, 88: 17-74.
 
B. P. Leonard,, S. Mokhtari, 1990. Beyond first-order upwinding: The ultra-sharp alternative for non-oscillatory steady-state simulation of convection. Int J Numer Meth Eng, 30: 729-766.
 
M. Malik,, E. S. C. Fan,, M. Bussmann, 2007. Adaptive VOF with curvature-based refinement. Int J Numer Meth Fl, 55: 693-712.
 
J. Meyer,, H. Renzsch,, K. Graf,, T. Slawing, 2016. Advanced CDF-simulations of free-surface flows around modern sailing yachts using a newly developed OpenFOAM solver. In: Proceedings of the 22nd Chesapeake Sailing Yacht Symposium.
 
F. Moukalled,, L. Mangani,, M. Darwish, 2016. The Finite Volume Method in Computational Fluid Dynamics. Springer International Publishing Switzerland.
 
S. Muzaferija,, M. Perić,, P. C. Sames,, T. Shellin, 1998. A two-fluid Navier-Stokes solver to simulate water entry. In: Proceedings of the 22nd Symposium on Naval Hydrodynamics, 638-651.
 
J. K. Patel,, G. Natarajan, 2015. A generic framework for design of interface capturing schemes for multi-fluid flows. Comput Fluids, 106: 108-118.
 
S. G. Rubin,, P. K. Khosla, 1977. Polynomial interpolation methods for viscous flow calculations. J Comput Phys, 24: 217-244.
 
M. Rudman, 1997. Volume-tracking methods for interfacial flow calculations. Int J Numer Meth Fl, 24: 671-691.
 
J. Sauer, 2000. Instationär kavitierende Strömungen: ein neues Modell, basierend auf front capturing (VoF) und Blasendynamik. Universität Karlsruhe.
 
G. Tryggvason,, R. Scardovelli,, S. Zaleski, 2001. Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press.
 
Y. Y. Tsui,, S. Lin,, T. Cheng,, T. C. Wu, 2009. Flux-blending schemes for interface capture in two-fluid flows. Int J Heat Mass Tran, 52: 5547-5556.
 
S. Turek,, O. Mierka,, K. Bäumler, 2019. Numerical benchmarking for 3D multiphase flow: New results for a rising bubble. In: Numerical Mathematics and Advanced Applications ENUMATH 2017. Lecture Notes in Computational Science and Engineering, Vol. 126. F. Radu,, K. Kumar,, I. Berre,, J. Nordbotten,, I. Pop, Eds. Springer Cham, 593-601.
 
O. Ubbink, 1997. Numerical prediction of two fluid systems with sharp interfaces. Imperial College of Science, Technology & Medicine, London, UK.
 
O. Ubbink,, R. I. Issa, 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. J Comput Phys, 153: 26-50.
 
J. Wackers,, B. Koren,, H. C. Raven,, A. van der Ploeg,, A. R. Starke,, G. B. Deng,, P. Queutey,, M. Visonneau,, T. Hino,, K. Ohashi, 2011. Free-surface viscous flow solution methods for ship hydrodynamics. Arch Comput Method E, 18: 1-41.
 
T. Wacławczyk,, Ö. Caner Gemici,, M. Schäfer, 2007. Novel high- resolution scheme for interface capturing in multi-phase flow. In: Proceedings of the 6th International Conference on Multiphase Flow, S1-Fri-A64.
 
S. T. Zalesak, 1979. Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys, 31: 335-362.
 
D. Zhang,, C. Jiang,, D. Liang,, Z. Chen,, Y. Yang,, Y. Shi, 2014. A refined volume-of-fluid algorithm for capturing sharp fluid interfaces on arbitrary meshes. J Comput Phys, 274: 709-736.
Experimental and Computational Multiphase Flow
Pages 208-225
Cite this article:
Mariño-Salguero J, Schäfer M. A Modified Normalized Weighting Factor method for improving the efficiency of the blended high-resolution advection schemes in the context of multiphase flows. Experimental and Computational Multiphase Flow, 2021, 3(3): 208-225. https://doi.org/10.1007/s42757-020-0074-2
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return