AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (994 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Modeling of solid-particle effects on bubble breakage and coalescence in slurry bubble columns

Adam MühlbauerMark W. Hlawitschka( )Hans-Jörg Bart
Lehrstuhl für Thermische Verfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
Show Author Information

Abstract

Solid particles heavily affect the hydrodynamics in slurry bubble columns. The effects arise through varying breakup and coalescence behavior of the bubbles with the presence of solid particles where particles in the micrometer range lead to a promotion of coalescence in particular. To simulate the gas-liquid-solid flow in a slurry bubble column, the Eulerian multifluid approach can be employed to couple computational fluid dynamics (CFD) with the population balance equation (PBE) and thus to account for breakup and coalescence of bubbles.

In this work, three approaches are presented to modify the breakup and coalescence models to account for enhanced coalescence in the coupled CFD-PBE framework. The approaches are applied to a reference simulation case with available experimental data. In addition, the impacts of the modifications on the simulated bubble size distribution (BSD) and the applicability of the approaches are evaluated. The capabilities as well as the differences and limits of the approaches are demonstrated and explained.

References

 
Abdullah, H. M. 2019. Study of axial solid concentration distribution in slurry bubble columns. Energy Procedia, 157: 1537-1545.
 
An, M., Guan, X., Yang, N. 2020. Modeling the effects of solid particles in CFD-PBM simulation of slurry bubble columns. Chem Eng Sci, 223: 115743.
 
Baird, M. H. I., Rice, R. G. 1975. Axial dispersion in large unbaffled columns. Chem Eng J, 9: 171-174.
 
Behkish, A., Lemoine, R., Oukaci, R., Morsi, B. I. 2006. Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chem Eng J, 115: 157-171.
 
Burns, A. D., Frank, T., Hamill, I., Shi, J. M. 2004. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In: Proceedings of the 5th International Conference on Multiphase Flow, 1-17.
 
Chen, P., Sanyal, J., Dudukovic, M. P. 2004. CFD modeling of bubble columns flows: Implementation of population balance. Chem Eng Sci, 59: 5201-5207.
 
Chen, Z., Grace, J. R., Lim, J. C. 2008. Limestone particle attrition and size distribution in a small circulating fluidized bed. Fuel, 87: 1360-1371.
 
Davidson, J. F., Schüler, B. O. 1960. Bubble formation at an orifice in an inviscid liquid. Trans Inst Chem Eng, 38: 335-342.
 
Deckwer, W.-D., Schumpe, A. 1985. Blasensälen - erkenntnisstand und entwicklungstendenzen. Chem Ing Tech, 57: 754-767.
 
Fan, L.-S. 1989. Gas-Liquid-Solid Fluidization Engineering. Boston: Butterworths.
 
Fan, L.-S., Hemminger, O., Yu, Z., Wang, F. 2007. Bubbles in nanofluids. Ind Eng Chem Res, 46: 4341-4346.
 
Gidaspow, D. 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. San Diego: Elsevier Science.
 
Hounslow, M. J., Ryall, R. L., Marshall, V. R. 1988. A discretized population balance for nucleation, growth, and aggregation. AIChE J, 34: 1821-1832.
 
Jakobsen, H. A. 2014. Chemical Reactor Modeling: Multiphase Reactive Flows, 2nd edn. Cham: Springer.
 
Jiang, X., Yang, N., Yang, B. 2016. Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor. Particuology, 27: 95-101.
 
Krishna, R., de Swart, J. W. A., Ellenberger, J., Martina, G. B., Maretto, C. 1997. Gas holdup in slurry bubble columns: Effect of column diameter and slurry concentrations. AIChE J, 43: 311-316.
 
Laakkonen, M., Alopaeus, V., Aittamaa, J. 2006. Validation of bubble breakage, coalescence and mass transfer models for gas-liquid dispersion in agitated vessel. Chem Eng Sci, 61: 218-228.
 
Laakkonen, M., Moilanen, P., Alopaeus, V., Aittamaa, J. 2007. Modelling local bubble size distributions in agitated vessels. Chem Eng Sci, 62: 721-740.
 
Li, H., Prakash, A. 2000. Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column. Powder Technol, 113: 158-167.
 
Luo, X., Lee, D. J., Lau, R., Yang, G., Fan, L.-S. 1999. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE J, 45: 665-680.
 
MacIntyre, S., Hammad, A., Pjontek, D. 2017. Particle agglomeration studies in a slurry bubble column due to liquid bridging: Effects of particle size and sparger design. Chem Eng Sci, 170: 213-224.
 
Mokhtari, M., Chaouki, J. 2019. New technique for simultaneous measurement of the local solid and gas holdup by using optical fiber probes in the slurry bubble column. Chem Eng J, 358: 831-841.
 
Mühlbauer, A., Hlawitschka, M. W., Bart, H.-J. 2019. Models for the numerical simulation of bubble columns: A review. Chem Ing Tech, 91: 1747-1765.
 
Ojima, S., Hayashi, K., Tomiyama, A. 2014. Effects of hydrophilic particles on bubbly flow in slurry bubble column. Int J Multiphase Flow, 58: 154-167.
 
Ojima, S., Sasaki, S., Hayashi, K., Tomiyama, A. 2015. Effects of particle diameter on bubble coalescence in a slurry bubble column. J Chem Eng Jpn, 48: 181-189.
 
Prince, M. J., Blanch, H. W. 1990. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J, 36: 1485-1499.
 
Rzehak, R., Krepper, E., Liao, Y., Ziegenhein, T., Kriebitzsch, S., Lucas, D. 2015. Baseline model for the simulation of bubbly flows. Chem Eng Technol, 38: 1972-1978.
 
Rzehak, R., Kriebitzsch, S. 2015. Multiphase CFD-simulation of bubbly pipe flow: A code comparison. Int J Multiphase Flow, 68: 135-152.
 
Sarhan, A. R., Naser, J., Brooks, G. 2018. Effects of particle size and concentration on bubble coalescence and froth formation in a slurry bubble column. Particuology, 36: 82-95.
 
Schäfer, J., Hlawitschka, M. W., Attarakih, M. M., Bart, H.-J. 2019. Experimental investigation of local bubble properties: Comparison to the sectional quadrature method of moments. AIChE J, 65: e16694.
 
Shah, Y. T., Kelkar, B. G., Godbole, S. P., Deckwer, W.-D. 1982. Design parameters estimations for bubble column reactors. AIChE J, 28: 353-379.
 
Sines, J. N., Hwang, S., Marashdeh, Q. M., Tong, A., Wang, D., He, P., Straiton, B. J., Zuccarelli, C. E., Fan, L.-S. 2019. Slurry bubble column measurements using advanced electrical capacitance volume tomography sensors. Powder Technol, 355: 474-480.
 
Squires, K. D., Eaton, J. K. 1994. Effect of selective modification of turbulence on two-equation models for particle-laden turbulent Flows. J Fluids Eng, 116: 778-784.
 
Sundaram, S., Collins, L. R. 1999. A numerical study of the modulation of isotropic turbulence by suspended particles. J Fluid Mech, 379: 105-143.
 
Syed, A. H., Boulet, M., Melchiori, T., Lavoie, J.-M. 2018. CFD simulation of a slurry bubble column: Effect of population balance kernels. Comput Fluids, 175: 167-179.
 
Tabib, M. V., Roy, S. A., Joshi, J. B. 2008. CFD simulation of bubble column—An analysis of interphase forces and turbulence models. Chem Eng J, 139: 589-614.
 
Tomiyama, A. 1998. Struggle with computational bubble dynamics. Multiphase Sci Technol, 10: 369-405.
 
Tomiyama, A., Kataoka, I., Fukuda, T., Sakaguchi, T. 1995. Drag coefficients of bubbles. 2nd report. drag coefficient for a swarm of bubbles and its applicability to transient flow. Trans Jpn Soc Mech Eng B, 61: 2810-2817.
 
Tomiyama, A., Kataoka, I., Zun, I., Sakaguchi, T. 1998. Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int J Ser B, 41: 472-479.
 
Tomiyama, A., Tamai, H., Zun, I., Hosokawa, S. 2002. Transverse migration of single bubbles in simple shear flows. Chem Eng Sci, 57: 1849-1858.
 
Troshko, A. A., Zdravistch, F. 2009. CFD modeling of slurry bubble column reactors for Fisher-Tropsch synthesis. Chem Eng Sci, 64: 892-903.
 
Tyagi, P., Buwa, V. V. 2017. Dense gas-liquid-solid flow in a slurry bubble column: Measurements of dynamic characteristics, gas volume fraction and bubble size distribution. Chem Eng Sci, 173: 346-362.
 
Vakhrushev, I. A., Efremov, G. I. 1970. Interpolation formula for computing the velocities of single gas bubbles in liquids. Chem Technol Fuels Oils, 6: 376-379.
 
Van der Zon, M., Hamersma, P. J., Poels, E. K., Bliek, A. 2002. Coalescence of freely moving bubbles in water by the action of suspended hydrophobic particles. Chem Eng Sci, 57: 4845-4853.
 
Vandu, C. O., Krishna, R. 2004. Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime. Chem Eng Process Process Intensif, 43: 987-995.
 
Vik, C. B., Solsvik, J., Hillestad, M., Jakobsen, H. A. 2018. Interfacial mass transfer limitations of the Fischer-Tropsch synthesis operated in a slurry bubble column reactor at industrial conditions. Chem Eng Sci, 192: 1138-1156.
 
Wang, T. 2011. Simulation of bubble column reactors using CFD coupled with a population balance model. Front Chem Sci Eng, 5: 162-172.
 
Weller, H., Greenshields, C., de Rouvray, C. 2018. OpenFOAM v6. London, United Kingdom: The OpenFOAM Foundation Ltd. Available at https://openfoam.org/version/6/.
 
Xu, L., Xia, Z., Guo, X., Chen, C. 2014. Application of population balance model in the simulation of slurry bubble column. Ind Eng Chem Res, 53: 4922-4930.
 
Zhang, D., Deen, N. G., Kuipers, J. A. M. 2006. Numerical simulation of the dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces. Chem Eng Sci, 61: 7593-7608.
 
Zhou, R., Yang, N., Li, J. 2017. CFD simulation of gas-liquid-solid flow in slurry bubble columns with EMMS drag model. Powder Technol, 314: 466-479.
Experimental and Computational Multiphase Flow
Pages 303-317
Cite this article:
Mühlbauer A, Hlawitschka MW, Bart H-J. Modeling of solid-particle effects on bubble breakage and coalescence in slurry bubble columns. Experimental and Computational Multiphase Flow, 2021, 3(4): 303-317. https://doi.org/10.1007/s42757-020-0078-y

740

Views

75

Downloads

12

Crossref

15

Web of Science

12

Scopus

Altmetrics

Received: 27 February 2020
Revised: 04 May 2020
Accepted: 14 May 2020
Published: 16 November 2020
© The Author(s) 2020

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return