AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

3D simulation of gas-laden liquid flows in centrifugal pumps and the assessment of two-fluid CFD methods

Markus Hundshagen1( )Michael Mansour2,3Dominique Thévenin2Romuald Skoda1
Chair of Hydraulic Fluid Machinery, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Lab. of Fluid Dynamics & Technical Flows, University of Magdeburg "Otto Von Guericke" , Universitätsplatz 2, 39106 Magdeburg, Germany
Mechanical Power Engineering Department, Faculty of Engineering, Mattaria, Helwan University, 11718 Cairo, Egypt
Show Author Information

Abstract

An assessment of a two-fluid model assuming a continuous liquid and a dispersed gas phase for 3D computational fluid dynamics (CFD) simulations of gas/liquid flow in a centrifugal research pump is performed. A monodisperse two-fluid model, in conjunction with a statistical eddy- viscosity turbulence model, is utilized. By a comprehensive measurement database, a thorough assessment of model inaccuracies is enabled. The results on a horizontal diffuser flow reveal that the turbulence model is one main limitation of simulation accuracy for gas/liquid flows. Regarding pump flows, distinctions of single-phase and two-phase flow in a closed and semi- open impeller are figured out. Even single-phase flow simulations reveal challenging requirements on a high spatial resolution, e.g., of the rounded blade trailing edge and the tip clearance gap flow. In two-phase pump operation, gas accumulations lead to coherent gas pockets that are predicted partly at wrong locations within the blade channel. At best, a qualitative prediction of gas accumulations and the head drop towards increasing inlet gas volume fractions (IGVF) can be obtained. One main limitation of two-fluid methods for pump flow is figured out in terms of the violation of the dilute, disperse phase assumption due to locally high disperse phase loading within coherent gas accumulations. In these circumstances, bubble population models do not appear beneficial compared to a monodisperse bubble distribution. Volume-of-Fluid (VOF) methods may be utilized to capture the phase interface at large accumulated gas cavities, requiring a high spatial resolution. Thus, a hybrid model, i.e., a dispersed phase two-fluid model including polydispersity for flow regions with a dilute gas phase, should be combined with an interphase capturing model, e.g., in terms of VOF. This hybrid model, together with scale- resolving turbulence models, seems to be indispensable for a quantitative two-phase pump performance prediction.

References

 
Ansys. 2017. ANSYS CFX-Solver Theory Guide, Release 18.0. Canonsburg, PA, USA.
 
R. Barrio,, J. Parrondo,, E. Blanco, 2010. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points. Comput Fluids, 39: 859-870.
 
T. J. Barth,, D. C. Jespersen, 1989. The design and application of upwind schemes on unstructured meshes. In: Proceedings of the 27th Aerospace Sciences Meeting.
 
C. A. Cappelino,, D. R. Roll,, G. Wilson, 1992. Design considerations and application guidelines for pumping liquids with entrained gas using open impeller centrifugal pump. In: Proceedings of the 9th International Pump Users Symposium, 51-60.
 
J. Caridad,, M. Asuaje,, F. Kenyery,, A. Tremante,, O. Aguillon, 2008. Characterization of a centrifugal pump impeller under two- phase flow conditions. J Pet Sci Technol, 63: 18-22.
 
J. Caridad,, F. Kenyery, 2004. CFD analysis of electric submersible pumps (ESP) handling two-phase mixtures. J Energ Res Tech, 126: 99-104.
 
S. C. P. Cheung,, G. H. Yeoh,, J. Y. Tu, 2008. Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes. AIChE J, 54: 1689-1710.
 
J. F. Domgin,, P. Gardin,, M. Brunet, 1999. Experimental and numerical investigation of gas stirred ladles. In: Proceedings of the 2nd International Conference on CFD in Minerals and Process Industries, 181-186.
 
X. Y. Duan,, S. C. P. Cheung,, G. H. Yeoh,, J. Y. Tu,, E. Krepper,, D. Lucas, 2011. Gas-liquid flows in medium and large vertical pipes. Chem Eng Sci, 66: 872-883.
 
M. A. N. Dupoiron, 2018. The effect of gas on multi-stage mixed-flow centrifugal pumps. Ph.D. Thesis. University of Cambridge.
 
Y. Egorov,, F. Menter, 2008. Development and application of SST-SAS turbulence model in the DESIDER project. In: Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97. S.-H. Peng,, W. Haase, Eds. Springer Berlin Heidelberg, 261-270.
 
A. Furukawa,, T. Togoe,, S. Sato,, Y. Takamatsu, 1988. Fundamental studies on a tandem bladed impeller of gas/liquid two-phase flow centrifugal pump. Memoirs of the Faculty of Engineering Kyushu University, 231-240.
 
H. Grotjans,, F. R. Menter, 1998. Wall functions for general application CFD codes. In: Proceedings of the 4th Computational Fluid Dynamics Conference, 1112-1117.
 
S. Hänsch,, D. Lucas,, T. Höhne,, E. Krepper, 2014. Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle. Nucl Eng Des, 279: 171-181.
 
S. Hänsch,, D. Lucas,, E. Krepper,, T. Höhne, 2012. A multi-field two-fluid concept for transitions between different scales of interfacial structures. Int J Multiphase Flow, 47: 171-182.
 
M. Hundshagen,, M. Mansour,, D. Thévenin,, R. Skoda, 2019a. Experimental investigation and 3D-CFD simulation of centrifugal pumps for gasladen liquids with closed and semi-open impellers. In: Proceedings of the 4th International Rotating Equipment Conference.
 
M. Hundshagen,, M. Mansour,, D. Thévenin,, R. Skoda, 2019b. Numerical investigation of two-phase air-water flow in a centrifugal pump with closed or semi-open impeller. In: Proceedings of the 13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Paper ID: ETC2019-011.
 
A. Huser,, S. Biringen, 1993. Direct numerical simulation of turbulent flow in a square duct. J Fluid Mech, 257: 65.
 
Q. Jiang,, Y. Heng,, X. Liu,, W. Zhang,, G. Bois,, Q. Si, 2019. A review of design considerations of centrifugal pump capability for handling inlet gas-liquid two-phase flows. Energies, 12: 1078.
 
S. Kopparthy,, M. Mansour,, G. Janiga,, D. Thévenin, 2020. Numerical investigations of turbulent single-phase and two-phase flows in a diffuser. Int J Multiphase Flow, 130: 103333.
 
E. Krepper,, T. Frank,, D. Lucas,, H.-M. Prasser,, P. Zwart, 2007. Inhomogeneous MUSIG model—a population balance approach for poly-dispersed bubbly flow. In: Proceedings of the 12th International Topic Meeting on Nuclear Reactor Thermal Hydraulics.
 
B. E. Launder,, G. J. Reece,, W. Rodi, 1975. Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech, 68: 537-566.
 
P. Limbach,, R. Skoda, 2017. Numerical and experimental analysis of cavitating flow in a low specific speed centrifugal pump with different surface roughness. J Fluids Eng, 139: 101201.
 
H. Luo,, H. F. Svendsen, 1996. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J, 42: 1225-1233.
 
M. Mansour,, P. Kováts,, B. Wunderlich,, D. Thévenin, 2018a. Experimental investigations of a two-phase gas/liquid flow in a diverging horizontal channel. Exp Therm Fluid Sci, 93: 210-217.
 
M. Mansour,, T. Parikh,, S. Engel,, D. Thévenin, 2020a. Numerical investigations of gas-liquid two-phase flow in a pump inducer. J Fluids Eng, 142: 021302.
 
M. Mansour,, T. Parikh,, D. Thévenin, 2020b. Experimental study of two-phase air/water flow in a centrifugal pump working with a closed or semi-open impeller. In: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Paper GT2020-15320.
 
M. Mansour,, B. Wunderlich,, D. Thévenin, 2018b. Effect of tip clearance gap and inducer on the transport of two-phase air- water flows by centrifugal pumps. Exp Therm Fluid Sci, 99: 487-509.
 
M. Mansour,, B. Wunderlich,, D. Thévenin, 2018c. Experimental study of two-phase air/water flow in a centrifugal pump working with a closed or a semi-open impeller. In: Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Paper GT2018-75380.
 
H. Marschall, 2011. Towards the numerical simulation of multi-scale two-phase flows. Ph.D. Thesis. Lehrstuhl I für Technische Chemie, München.
 
S. Melzer,, T. Müller,, S. Schepeler,, T. Kalkkuhl,, R. Skoda, 2019. Experimental and numerical investigation of the transient characteristics and volute casing wall pressure fluctuations of a single-blade pump. P I Mech Eng E: J Pro, 233: 280-291.
 
F. R. Menter, 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J, 32: 1598-1605.
 
F. R. Menter,, J. Carregal Ferreira,, T. Esch,, B. Konno, 2003. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the International Gas Turbine Congress.
 
F. Menter,, T. Esch, 2001. Elements of industrial heat transfer prediction. In: Proceedings of the 16th Brazilian Congress of Mechanical Engineering.
 
K. Minemura,, M. Murakami,, H. Katagiri, 1985. Characteristics of centrifugal pumps handling air-water mixtures and size of air bubbles in pump impellers. B JSME, 28: 2310-2318.
 
K. Minemura,, T. Uchiyama, 1993. Prediction of pump performance under air-water two-phase flow based on a bubbly flow model. J Fluids Eng, 115: 781-783.
 
W. Monte Verde,, J. L. Biazussi,, N. A. Sassim,, A. C. Bannwart, 2017. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers. Exp Therm Fluid Sci, 85: 37-51.
 
T. Müller,, P. Limbach,, R. Skoda, 2015. Numerical 3D RANS simulation of gas-liquid flow in a centrifugal pump with an Euler-Euler two-phase model and a dispersed phase distribution. In: Proceedings of the 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics.
 
T. Müller,, P. Limbach,, R. Skoda, 2016. Influence of geometry simplifications and numerical parameters in 3D URANS liquid- gas flow simulations of a radial pump with an Eulerian mono- dispersed two-phase model. In: Proceeding of the International Symposium on Transport Phenomena and Dynamics of Rotating Machinery.
 
M. Murakami,, K. Minemura,, H. Suehiro, 1971. Effects of entrained air on the performance of centrifugal and axial flow pumps. Memoirs of the School of Engineering Nagoya University, 23: 124-133.
 
M. Neumann,, T. Schäfer,, A. Bieberle,, U. Hampel, 2016. An experimental study on the gas entrainment in horizontally and vertically installed centrifugal pumps. J Fluids Eng, 138: 12019.
 
E. T. Pak,, J. C. Lee, 1998. Performance and pressure distribution changes in a centrifugal pump under two-phase flow. P I Mech Eng A: J Pow, 212: 165-171.
 
T. Parikh,, M. Mansour,, D. Thévenin, 2020. Investigations on the effect of tip clearance gap and inducer on the transport of air-water two-phase flow by centrifugal pumps. Chem Eng Sci, 218: 115554.
 
R. M. Perissinotto,, W. Monte Verde,, M. Gallassi,, G. F. N. Gonçalves,, M. S. de Castro,, J. Carneiro,, J. L. Biazussi,, A. C. Bannwart, 2019. Experimental and numerical study of oil drop motion within an ESP impeller. J Petrol Sci Eng, 175: 881-895.
 
H. Pineda,, J. Biazussi,, F. López,, B. Oliveira,, R. D. M. Carvalho,, A. C. Bannwart,, N. Ratkovich, 2016. Phase distribution analysis in an Electrical Submersible Pump (ESP) inlet handling water-air two-phase flow using Computational Fluid Dynamics (CFD). J Petrol Sci Eng, 139: 49-61.
 
M. J. Prince,, H. W. Blanch, 1990. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J, 36: 1485-1499.
 
R. Rutter,, Z. Ye,, R. Lack, 2017. Electric submersible pump performance and numerical modeling in two-phase flow. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference.
 
S. Sato,, A. Furukawa,, Y. Takamatsu, 1996. Air-water two-phase flow performance of centrifugal pump impellers with various blade angles. JSME Int J Ser B, 39: 223-229.
 
T. Schäfer,, A. Bieberle,, M. Neumann,, U. Hampel, 2015. Application of gamma-ray computed tomography for the analysis of gas holdup distributions in centrifugal pumps. Flow Meas Instrumn, 46: 262-267.
 
T. Schäfer,, M. Neumann-Kipping,, A. Bieberle,, M. Bieberle,, U. Hampel, 2020. Ultrafast X-ray computed tomography imaging for hydrodynamic investigations of gas-liquid two-phase flow in centrifugal pumps. J Fluids Eng, 142: 42901.
 
L. Schiller,, A. Naumann, 1933. Über die grundlegenden Berechnungen bei Schwerkraftaufbereitung. Zeitschrift des Vereines deutscher Ingenieure 77.
 
O. Y. Shonibare,, K. E. Wardle, 2015. Numerical investigation of vertical plunging jet using a hybrid multifluid-VOF multiphase CFD solver. Int J Chem Eng, 2015: 1-14.
 
Q. Si,, G. Bois,, Q. Jiang,, W. He,, A. Ali,, S. Yuan, 2018. Investigation on the handling ability of centrifugal pumps under air-water two-phase inflow: Model and experimental validation. Energies, 11: 3048.
 
Q. Si,, G. Bois,, M. Liao,, H. Zhang,, Q. Cui,, S. Yuan, 2020. A comparative study on centrifugal pump designs and two-phase flow characteristic under inlet gas entrainment conditions. Energies, 13: 65.
 
Q. Si,, G. Bois,, K. Zhang,, J. Yuan, 2017. Air-water two-phase flow experimental and numerical analysis in a low specific speed centrifugal pump. In: Proceedings of the 12th European Conference on Turbomachinery Fluid Dynamics and Hermodynamics.
 
H. Stel,, E. M. Ofuchi,, R. F. Alves,, S. Chiva,, R. E. M. Morales, 2020a. Experimental analysis of gas-liquid flows in a centrifugal rotor. J Fluids Eng, 142: 031101.
 
H. Stel,, E. M. Ofuchi,, S. Chiva,, R. E. M. Morales, 2020b. Numerical simulation of gas-liquid flows in a centrifugal rotor. Chem Eng Sci, 221: 115692.
 
P. Tillack, 1998. Forderverhalten von Kreiselpumpen bei viskosem, gasbeladenem Fordermedium. Ph.D. Thesis. TU Kaiserslautern.
 
W. Vieser,, T. Esch,, F. Menter, 2002. Heat transfer predictions using advanced two-equation turbulence models. Technical Report. CFX Technical Memorandum. CFX-VAL10/0602.
 
S. Wallin,, A. V. Johansson, 2000. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J Fluid Mech, 403: 89-132.
 
Q. Wang,, W. Yao, 2016. Computation and validation of the interphase force models for bubbly flow. Int J Heat Mass Trans, 98: 799-813.
 
K. E. Wardle,, H. G. Weller, 2013. Hybrid multiphase CFD solver for coupled dispersed/segregated flows in liquid-liquid extraction. Int J Chem Eng, 2013: 1-13.
 
M. Xiang,, S. C. P. Cheung,, G. H. Yeoh,, W. H. Zhang,, J. Y. Tu, 2011. On the numerical study of bubbly flow created by ventilated cavity in vertical pipe. Int J Multiphase Flow, 37: 756-768.
 
S. Yamoah,, R. Martínez-Cuenca,, G. Monrós,, S. Chiva,, R. Macián-Juan, 2015. Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow. Chem Eng Res Des, 98: 17-35.
 
Z. Y. Yu,, Q. Z. Zhang,, R. Huang,, S. L. Cao, 2012. Numerical analysis of gas-liquid mixed transport process in a multiphase rotodynamic pump. IOP Conf Ser: Earth Environ Sci, 15: 032062.
 
J. Zhang,, S. Cai,, Y. Li,, Y. Li,, Y. Zhang, 2017. Optimization design of multiphase pump impeller based on combined genetic algorithm and boundary vortex flux diagnosis. J Hydrodyn, 29: 1023-1034.
 
W. Zhang,, Z. Yu,, Y. Li, 2018. Analysis of flow and phase interaction characteristics in a gas-liquid two-phase pump. Oil & Gas Science and Technology - Revue d'IFP Energies Nouvelles, 73: 69.
 
J. Zhu,, H. Zhang, 2017. Numerical study on electrical-submersible- pump two-phase performance and bubble-size modeling. SPE Prod Oper, 32: 267-278.
 
J. Zhu,, H. Zhang, 2018. A review of experiments and modeling of gas-liquid flow in electrical submersible pumps. Energies, 11: 180.
 
J. Zhu,, H. Zhu,, J. Zhang,, H. Zhang, 2019. A numerical study on flow patterns inside an electrical submersible pump (ESP) and comparison with visualization experiments. J Petrol Sci Eng, 173: 339-350.
 
Z. Zhu,, H. Yang,, T. Chen, 2009. Direct numerical simulation of turbulent flow in a straight square duct at Reynolds number 600. J Hydrodyn, 21: 600-607.
Experimental and Computational Multiphase Flow
Pages 186-207
Cite this article:
Hundshagen M, Mansour M, Thévenin D, et al. 3D simulation of gas-laden liquid flows in centrifugal pumps and the assessment of two-fluid CFD methods. Experimental and Computational Multiphase Flow, 2021, 3(3): 186-207. https://doi.org/10.1007/s42757-020-0080-4

924

Views

18

Downloads

20

Crossref

21

Web of Science

21

Scopus

Altmetrics

Received: 13 March 2020
Revised: 06 May 2020
Accepted: 04 June 2020
Published: 11 August 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return