AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Analysis of interfacial dynamics in stratified and wavy-stratified flow using Laser Doppler Velocimetry

Sunny Saini1Jignesh Thaker2Jyotirmay Banerjee1( )
Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India
Adani Institute of Infrastructure Engineering, Ahmedabad-382421, Gujarat, India
Show Author Information

Abstract

Interfacial behaviour of stratified and wavy-stratified flow is analysed in terms of measured velocity signals in liquid phase using Laser Doppler Velocimetry. Measurement of liquid height (interface level) is achieved using Laser Doppler Velocimetry synchronized with a computerised 3-dimensional traverse system. The precision obtained in measurement of air sheared interface level (liquid height) in this approach is 0.032±0.01 mm. First part of this paper deals with influence of gas and liquid superficial Reynolds numbers on the liquid height for stratified and wavy-stratified flow. With increase in liquid depth, waves are initiated at the gas-liquid interface which is precursor to slug formation. A critical liquid height for onset of slug formation is obtained in this part. The second part deals with the measurement of fluctuations occurring near to the air-sheared interface. These fluctuations are recorded in terms of local velocity of liquid phase and have been used to characterize the behaviour of air-water interface for stratified and wavy-stratified flow. Furthermore, influence of gas and liquid flow rates on local liquid velocity for different stratified and wavy-stratified flow conditions is analysed by plotting the axial velocity profiles in radial direction.

References

 
Ahmed, W. 2012. Nuclear Power: Practical Aspects. IntechOpen.
 
Andritsos, N., Hanratty, T. J. 1987. Interfacial instabilities for horizontal gas-liquid flows in pipelines. Int J Multiphase Flow, 13:583-603.
 
Andritsos, N., Williams, L., Hanratty, T. J. 1989. Effect of liquid viscosity on the stratified-slug transition in horizontal pipe flow. Int J Multiphase Flow, 15:877-892.
 
Andritsos, N. 1992. Statistical properties of stratified flows. Int J Multiphase Flow, 18:465-473.
 
Arunkumar, S., Adhavan, J., Venkatesan, M., Das, S. K., Balakrishnan, A. R. 2015. Characterization of gas-liquid two phase flows using dielectric sensors. Flow Meas Instrum, 45:274-279.
 
Ayati, A. A., Kolaas, J., Jensen, A., Johnson, G. W. 2014. A PIV investigation of stratified gas-liquid flow in a horizontal pipe. Int J Multiphase Flow, 61:129-143.
 
Ayati, A. A., Kolaas, J., Jensen, A., Johnson, G. W. 2015. Combined simultaneous two-phase PIV and interface elevation measurements in stratified gas/liquid pipe flow. Int J Multiphase Flow, 74:45-58.
 
Aydin, T. B., Torres, C. F., Karami, H., Pereyra, E., Sarica, C. 2015. On the characteristics of the roll waves in gas-liquid stratified-wavy flow: A two-dimensional perspective. Exp Therm Fluid Sci, 65:90-102.
 
Baker, O. 1954. Simultaneous flow of oil and gas. Oil Gas J, 53:185-190.
 
Bech, K. H., Tillmark, N., Alfredsson, P. H., Andersson, H. I. 1995. An investigation of turbulent plane Couette flow at low Reynolds numbers. J Fluid Mech, 286:291-325.
 
Birvalski, M., Tummers, M. J., Delfos, R., Henkes, R. A. W. M. 2014. PIV measurements of waves and turbulence in stratified horizontal two-phase pipe flow. Int J Multiphase Flow, 62:161-173.
 
Carey, V. P. 2020. Pool boiling. In: Liquid-Vapor Phase-Change Phenomena. CRC Press, 249-330.
 
Chen, X. T., Cal, X. D., Brill, J. P. 1997. Gas-liquid stratified-wavy flow in horizontal pipelines. J Energy Resour Technol, 119:209-216.
 
Collier, J. G., Thome, J. R. 1994. Convective Boiling and Condensation. Oxford University Press.
 
Da Silva, M. J., Thiele, S., Abdulkareem, L., Azzopardi, B. J., Hampel, U. 2010. High-resolution gas-oil two-phase flow visualization with a capacitance wire-mesh sensor. Flow Meas Instrum, 21:191-197.
 
Dykhno, L. A., Williams, L. R., Hanratty, T. J. 1994. Maps of mean gas velocity for stratified flows with and without atomization. Int J Multiphase Flow, 20:691-702.
 
Fernandino, M., Ytrehus, T. 2006. Determination of flow sub-regimes in stratified air-water channel flow using LDV spectra. Int J Multiphase Flow, 32:436-446.
 
Ghajar, A. J., Tang, C. C. 2007. Heat transfer measurements, flow pattern maps, and flow visualization for non-boiling two-phase flow in horizontal and slightly inclined pipe. Heat Transfer Eng, 28:525-540.
 
Hanratty, T. J. 2013. Physics of Gas-Liquid Flows. Cambridge University Press.
 
Hewitt, G. F. 1982. Liquid-gas systems. In: Handbook of Multiphase Systems. Hetsroni, G. Ed. Hemisphere.
 
Hoogendoorn, C. J. 1959. Gas-liquid flow in horizontal pipes. Chem Eng Sci, 9:205-217.
 
Jeffreys, H. 1925. On the formation of water waves by wind. Proc R Soc Lond A, 107:189-206.
 
Ko, M. S., Lee, S. Y., Lee, B. A., Yun, B. J., Kim, K. Y., Kim, S. 2013. An electrical impedance sensor for water level measurements in air-water two-phase stratified flows. Meas Sci Technol, 24:095301.
 
Kordyban, E. S., Ranov, T. 1970. Mechanism of slug formation in horizontal two-phase flow. J Basic Eng, 92:857-864.
 
Lin, P. Y. 1985. Flow regime transitions in horizontal gas-liquid flow. Ph.D. Dissertation. University of Illinois Urbana.
 
Line, A., Fabre, J. 1997. Stratified gas liquid flow. In: A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering. CRC Press, 1097-1101.
 
Line, A., Masbernat, L., Mire, A., Soualmia, A. 1990. Analysis of the local structures of co-current stratified two-phase flow. In: Proceedings of the European Two-phase Flow Group Meeting.
 
Liu, L., Hu, B., Langsholt, M., Yang, Z. 2014. Characteristics of gas-viscous oil flows in a 0.1 m diameter pipeline measured by an X-ray CT system. In: Proceedings of the 9th North American Conference on Multiphase Technology, BHR-2014-B3.
 
Mandhane, J. M., Gregory, G. A., Aziz, K. 1974. A flow pattern map for gas-liquid flow in horizontal pipes. Int J Multiphase Flow, 1:537-553.
 
Miles, J. W. 1957. On the generation of surface waves by shear flows. J Fluid Mech, 3:185.
 
Mishima, K., Ishii, M. 1980. Theoretical prediction of onset of horizontal slug flow. J Fluids Eng, 102:441-445.
 
Monni, G., de Salve, M., Panella, B. 2014. Horizontal two-phase flow pattern recognition. Exp Therm Fluid Sci, 59:213-221.
 
Mosavati, M., Kowsary, F., Mosavati, B. 2013. A novel, noniterative inverse boundary design regularized solution technique using the backward Monte Carlo method. J Heat Transf, 135:042701.
 
Munson, B. R., Young, D. F., Okiishi, T. H. 2002. Fundamentals of Fluid Mechanics. Wiley.
 
Pitton, E., Ciandri, P., Margarone, M., Andreussi, P. 2014. An experimental study of stratified-dispersed flow in horizontal pipes. Int J Multiphase Flow, 67:92-103.
 
Schleicher, E., Besim Aydin, T., Vieira, R. E., Torres, C. F., Pereyra, E., Sarica, C., Hampel, U. 2015. Refined reconstruction of liquid-gas interface structures for stratified two-phase flow using wire-mesh sensor. Flow Meas Instrum, 46:230-239.
 
Shi, J., Kocamustafaogullari, G. 1994. Interfacial measurements in horizontal stratified flow patterns. Nucl Eng Des, 149:81-96.
 
Spedding, P. L., Spence, D. R. 1993. Flow regimes in two-phase gas-liquid flow. Int J Multiphase Flow, 19:245-280.
 
Strand, O. 1993. An experimental investigation of stratified two-phase flow in horizontal pipes. Ph.D. Thesis. University of Oslo.
 
Taitel, Y., Dukler, A. E. 1976. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J, 22:47-55.
 
Thaker, J., Banerjee, J. 2015. Characterization of two-phase slug flow sub-regimes using flow visualization. J Petrol Sci Eng, 135:561-576.
 
Thaker, J., Banerjee, J. 2016. Influence of intermittent flow sub- patterns on erosion-corrosion in horizontal pipe. J Petrol Sci Eng, 145:298-320.
 
Thaker, J., Banerjee, J. 2017a. Experimental investigations on onset of slugging in horizontal air-water two-phase flow. In: Fluid Mechanics and Fluid Power - Contemporary Research. Lecture Notes in Mechanical Engineering. Saha, A., Das, D., Srivastava, R., Panigrahi, P., Muralidhar, K. Eds. Springer, 157-166.
 
Thaker, J., Banerjee, J. 2017b. Transition of plug to slug flow and associated fluid dynamics. Int J Multiphase Flow, 91:63-75.
 
Tzotzi, C., Andritsos, N. 2013. Interfacial shear stress in wavy stratified gas-liquid flow in horizontal pipes. Int J Multiphase Flow, 54:43-54.
 
United Kingdom Accreditation Service (UKAS). 2007. The expression of uncertainty and confidence in measurement M3003.
 
Vaze, M. J., Banerjee, J. 2011. Experimental visualization of two-phase flow patterns and transition from stratified to slug flow. P I Mech Eng C: J Mec, 225:382-389.
 
Vieira, R. E., Kesana, N. R., Torres, C. F., McLaury, B. S., Shirazi, S. A., Schleicher, E., Hampel, U. 2014. Experimental investigation of horizontal gas-liquid stratified and annular flow using wire-mesh sensor. J Fluids Eng 136:121301.
 
Wood, M. H., Vetere Arellano, A. L., van Wuk, L. 2013. Corrosion related accidents in petroleum refineries: Lessons learned from accidents in EU and OECD countries. JRC Scientific and Policy Reports, EUR 26331 EN.
Experimental and Computational Multiphase Flow
Pages 142-155
Cite this article:
Saini S, Thaker J, Banerjee J. Analysis of interfacial dynamics in stratified and wavy-stratified flow using Laser Doppler Velocimetry. Experimental and Computational Multiphase Flow, 2022, 4(2): 142-155. https://doi.org/10.1007/s42757-020-0083-1

724

Views

5

Crossref

7

Web of Science

6

Scopus

Altmetrics

Received: 11 May 2020
Revised: 19 July 2020
Accepted: 19 August 2020
Published: 16 January 2021
© Tsinghua University Press 2020
Return