AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Multiscale modelling of nucleate boiling on nanocoatings for electronics cooling—From nanoscale to macroscale

School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
Show Author Information

Abstract

This paper presents a review of the latest experimental and theoretical studies on enhancing boiling/evaporative heat transfer using nanofabricated porous coatings, with potential applications in the fields of electronics thermal management. It is proposed that the key to enhanced heat transfer lies in optimal design of nanostructures that can activate a reduced/negative pressure through nanoscale evaporation, allow continuous liquid microflow through the porous nanostructures, and facilitate bubble release from the coating. In this point of view, a multiscale predictive approach that covers a wide size range from nanoscale to the system size is critical. We propose this can be achieved by combing Molecular Dynamics (MD) simulations, the Lattice Boltzmann Method (LBM), and Two-Fluid Model (TFM) in a coupled way, with the MD addressing the generation of negative pressure, LBM modelling the liquid microflow, and TFM simulating the two-phase coolant flows. The comprehensive modelling strategy will provide a mechanistic all-in-one simulation of the complex multiscale process, and greatly boost the design of optimal nanostructures.

References

 
Ball, P. 2012. Computer engineering: Feeling the heat. Nature, 492: 174-176.
 
Barber, J., Brutin, D., Tadrist, L. 2011. A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res Lett, 6: 280.
 
Coursey, J. S., Kim, J. 2008. Nanofluid boiling: The effect of surface wettability. Int J Heat Fluid Fl, 29: 1577-1585.
 
Dong, L., Quan, X., Cheng, P. 2014. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int J Heat Mass Tran, 71: 189-196.
 
Duan, C., Karnik, R., Lu, M. C., Majumdar, A. 2012. Evaporation- induced cavitation in nanofluidic channels. PNAS, 109: 3688-3693.
 
El-Genk, M. S., Parker, J. L. 2004. Pool boiling in saturated and subcooled HFE-7100 dielectric fluid from a porous graphite surface. In: Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1: 655-662.
 
Ganapathy, H., Sajith, V. 2013. Semi-analytical model for pool boiling of nanofluids. Int J Heat Mass Tran, 57: 32-47.
 
Gerardi, C., Buongiorno, J., Hu, L., McKrell, T. 2010. Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. Int J Heat Mass Tran, 53: 4185-4192.
 
Gong, S., Cheng, P. 2012. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int J Heat Mass Tran, 55: 4923-4927.
 
Gong, S., Cheng, P. 2015. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int J Heat Mass Tran, 80: 206-216.
 
Hamidnia, M., Luo, Y., Wang, X. D. 2018. Application of micro/nano technology for thermal management of high power LED packaging—A review. Appl Therm Eng, 145: 637-651.
 
Hanks, D. F., Lu, Z., Sircar, J., Salamon, T. R., Antao, D. S., Bagnall, K. R., Barabadi, B., Wang, E. N. 2018. Nanoporous membrane device for ultra high heat flux thermal management. Microsyst Nanoeng, 4: 1.
 
Hayashi, H. 2003. Lattice Boltzmann method and its application to flow analysis in porous media. R&D Review of Toyota CRDL, 38: 17-25.
 
Khan, N., Pinjala, D., Toh, K. C. 2004. Pool boiling heat transfer enhancement by surface modification/micro-structures for electronics cooling: A review. In: Proceedings of the 6th Electronics Packaging Technology Conference, 273-280.
 
Kim, B. S., Shin, S., Lee, D., Choi, G., Lee, H., Kim, K. M., Cho, H. H. 2014. Stable and uniform heat dissipation by nucleate-catalytic nanowires for boiling heat transfer. Int J Heat Mass Tran, 70: 23-32.
 
Kim, D. E., Yu, D. I., Jerng, D. W., Kim, M. H., Ahn, H. S. 2015. Review of boiling heat transfer enhancement on micro/ nanostructured surfaces. Exp Therm Fluid Sci, 66: 173-196.
 
Kim, S. J., Bang, I. C., Buongiorno, J., Hu, L. W. 2006. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett, 89: 153107.
 
Kurul, N., Podowski, M. Z. 1990. Multidimensional effects in forced-convection subcooled boiling. In: Proceedings of the 9th International Heat Transfer Conference, 21-26.
 
Léal, L., Miscevic, M., Lavieille, P., Amokrane, M., Pigache, F., Topin, F., Nogarède, B., Tadrist, L. 2013. An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. Int J Heat Mass Tran, 61: 505-524.
 
Lee, C. Y., Hossain Bhuiya, M. M., Kim, K. J. 2010. Pool boiling heat transfer with nano-porous surface. Int J Heat Mass Tran, 53: 4274-4279.
 
Li, C., Wang, Z., Wang, P. I., Peles, Y., Koratkar, N., Peterson, G. P. 2008a. Nanostructured copper interfaces for enhanced boiling. Small, 4: 1084-1088.
 
Li, Q., Luo, K. H., Kang, Q. J., He, Y. L., Chen, Q., Liu, Q. 2016. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog Energ Combust, 52: 62-105.
 
Li, S., Furberg, R., Toprak, M. S., Palm, B., Muhammed, M. 2008b. Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv Funct Mater, 18: 2215-2220.
 
Li, X., Cole, I., Tu, J. 2019. A review of nucleate boiling on nanoengineered surfaces—The nanostructures, phenomena and mechanisms. Int J Heat Mass Tran, 141: 20-33.
 
Li, X., Wang, R., Huang, R., Shi, Y. 2006. Numerical investigation of boiling flow of nitrogen in a vertical tube using the two-fluid model. Appl Therm Eng, 26: 2425-2432.
 
Li, X., Wang, R., Huang, R., Shi, Y. 2007. Numerical and experimental investigation of pressure drop characteristics during upward boiling two-phase flow of nitrogen. Int J Heat Mass Tran, 50: 1971-1981.
 
Li, X., Wei, W., Wang, R., Shi, Y. 2009. Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen. Int J Heat Mass Tran, 52: 1510-1516.
 
Li, X., Yan, Y., Shang, Y., Tu, J. 2015a. An Eulerian-Eulerian model for particulate matter transport in indoor spaces. Build Environ, 86: 191-202.
 
Li, X., Yuan, Y., Tu, J. 2015b. A parametric study of the heat flux partitioning model for nucleate boiling of nanofluids. Int J Therm Sci, 98: 42-50.
 
Maroo, S. C., Chung, J. N. 2011. Negative pressure characteristics of an evaporating meniscus at nanoscale. Nanoscale Res Lett, 6: 72.
 
Maroo, S. C., Chung, J. N. 2013. Fundamental roles of nonevaporating film and ultrahigh heat flux associated with nanoscale meniscus evaporation in nucleate boiling. J Heat Transfer, 135: 061501.
 
McNamara, G. R., Zanetti, G. 1988. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett, 61: 2332-2335.
 
Nadjahi, C., Louahlia, H., Lemasson, S. 2018. A review of thermal management and innovative cooling strategies for data center. Sustain Comput: Infor, 19: 14-28.
 
Shojaeian, M., Koşar, A. 2015. Pool boiling and flow boiling on micro-and nanostructured surfaces. Exp Therm Fluid Sci, 63: 45-73.
 
Stutz, B., Morceli, C. H. S., de Fátima da Silva, M., Cioulachtjian, S., Bonjour, J. 2011. Influence of nanoparticle surface coating on pool boiling. Exp Therm Fluid Sci, 35: 1239-1249.
 
Waldrop, M. M. 2016. The chips are down for Moore's law. Nature, 530: 144-147.
 
Wheeler, T. D., Stroock, A. D. 2008. The transpiration of water at negative pressures in a synthetic tree. Nature, 455: 208-212.
 
Yao, Z., Lu, Y. W., Kandlikar, S. G. 2011. Effects of nanowire height on pool boiling performance of water on silicon chips. Int J Therm Sci, 50: 2084-2090.
 
Yeom, H., Sridharan, K., Corradini, M. L. 2015. Bubble dynamics in pool boiling on nanoparticle-coated surfaces. Heat Transfer Eng, 36: 1013-1027.
Experimental and Computational Multiphase Flow
Pages 233-241
Cite this article:
Li X. Multiscale modelling of nucleate boiling on nanocoatings for electronics cooling—From nanoscale to macroscale. Experimental and Computational Multiphase Flow, 2021, 3(4): 233-241. https://doi.org/10.1007/s42757-020-0086-y

547

Views

20

Crossref

20

Web of Science

19

Scopus

Altmetrics

Received: 31 July 2020
Revised: 20 August 2020
Accepted: 27 August 2020
Published: 16 November 2020
© Tsinghua University Press 2020
Return