AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Numerical assessment of performance characteristics and two-phase flow dynamics of a centrifugal rotor operating under gas entrainment condition

Henrique Stel1Edgar M. Ofuchi1Sergio Chiva2Rigoberto E. M. Morales1( )
Multiphase Flow Research Center, Federal University of Technology - UTFPR, Curitiba, 81280-340, Brazil
Departament d'Enginyeria Mecànica i Construcció - Universitat Jaume I, Castellón de la Plana, 12071, Spain
Show Author Information

Abstract

This work presents a numerical study of performance characteristics and flow dynamics of a centrifugal rotor operating with gas-liquid flow. An Euler-Euler polydispersed model is adopted, which was validated in a previous publication and is used in this work to assess quantities not addressed in the earlier study. An analysis of the rotor performance under two-phase is performed, for which suitable expressions are presented. In particular, an analysis of the rotor head components is carried out including the dynamic head evaluation through the rotor, which is often neglected in most studies. The numerical model is explored further to analyze flow patterns and relevant gas-liquid flow quantities. This includes analysis of the three-dimensional distribution of the gas phase inside the rotor, evaluation of gas-liquid interphase forces, and the effect of the intake gas flow rate on the bubble diameter, gas-liquid relative velocities, and the overall turbulence levels through the rotor. Such analyses, which are usually hard to obtain through experimental methods, are also rarely found in related numerical studies. Thus, this work could bring useful information to help in the understanding of the gas-liquid flow behavior in centrifugal rotors, while also contributing to the progress of numerical solution of this problem.

References

 
ANSYS. 2019. ANSYS® Academic Research, Release 2019 R2, Help System, CFX Documentation. Canonsburg: Ansys, Inc.
 
Antal, S. P., Lahey, R. T., Flaherty, J. E. 1991. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiphase Flow, 17: 635-652.
 
Barrios, L., Prado, M. G. 2011. Experimental visualization of two-phase flow inside an electrical submersible pump stage. J Energy Resour Technol, 133: 042901.
 
Beltur, R., Prado, M., Duran, J., Pessoa, R. 2003. Analysis of experimental data of ESP performance under two-phase flow conditions. In: Proceedings of the SPE Production and Operations Symposium, Paper No. SPE-80921-MS.
 
Brennen, C. E. 1994. Hydrodynamics of Pumps. Oxford: Oxford University Press.
 
Caridad, J., Kenyery, F. 2004. CFD analysis of electric submersible pumps (ESP) handling two-phase mixtures. J Energy Resour Technol, 126: 99-104.
 
Caridad, J., Asuaje, M., Kenyery, F., Tremante, A., Aguillón, O. 2008. Characterization of a centrifugal pump impeller under two-phase flow conditions. J Petrol Sci Eng, 63: 18-22.
 
Clift, R., Grace, J. R., Weber, M. E. 1978. Bubbles, Drops and Particles. New York: Academic Press.
 
Cooper, P., Schiavello, B., Marolles, C., Salis, J., Prang, A. J., Broussard, D. H. 1996. Tutorial on multiphase gas-liquid pumping. In: Proceedings of the 13th International Pump User Symposium, 159-174.
 
Cubas, J. M. C., Stel, H., Ofuchi, E. M., Marcelino Neto, M. A., Morales, R. E. M. 2020. Visualization of two-phase gas-liquid flow in a radial centrifugal pump with a vaned diffuser. J Petrol Sci Eng, 187: 106848.
 
Fox, R. W., McDonald, A. T., Pritchard, P. J. 2003. Introduction to Fluid Mechanics, 6th edn. Hoboken: John Wiley & Sons.
 
Furukawa, A., Shirasu, S. I., Sato, S. 1996. Experiments on air-water two-phase flow pump impeller with rotating-stationary circular cascades and recirculating flow holes. JSME International Journal Series B Fluids and Thermal Engineering, 39: 575-582.
 
Gamboa, J., Prado, M. 2010. Visualization study of the performance breakdown in the two-phase performance of an electrical submersible pump. In: Proceedings of the 26th International Pump User Symposium, 1-15.
 
Gamboa, J., Prado, M. 2012. Experimental study of two-phase performance of an electric-submersible-pump stage. SPE Prod Oper, 27: 414-421.
 
Gülich, J. F. 2010. Centrifugal Pumps. Berlin: Springer.
 
Ishii, M., Hibiki, T. 2006. Thermo-Fluid Dynamics of Two-Phase Flow. New York: Springer.
 
Lea, J. F., Bearden, J. L. 1982. Effect of gaseous fluids on submersible pump performance. J Petrol Technol, 34: 2922-2930.
 
Liao, Y., Rzehak, R., Lucas, D., Krepper, E. 2015. Baseline closure model for dispersed bubbly flow: Bubble coalescence and breakup. Chem Eng Sci, 122: 336-349.
 
Lo, S. 1996. Application of the MUSIG model to bubbly flows. In: AEAT-1096, AEA Technology.
 
Lopez de Bertodano, M. 1991. Turbulent bubbly flow in a triangular duct. Ph.D. Thesis. Rensselaer Polytechnic Institute.
 
Ma, T., Santarelli, C., Ziegenhein, T., Lucas, D., Fröhlich, J. 2017. Direct numerical simulation-based Reynolds-averaged closure for bubble-induced turbulence. Phys Rev Fluids, 2: 034301.
 
Marsis, E., Pirouzpanah, S., Morrison, G. 2013. CFD-based design improvement for single-phase and two-phase flows inside an electrical submersible pump. In: Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting, Paper No. FEDSM2013-16060.
 
Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J, 32: 1598-1605.
 
Minemura, K., Murakami, M. 1980. A theoretical study on air bubble motion in a centrifugal pump impeller. J Fluids Eng, 102: 446-453.
 
Monte Verde, W., Biazussi, J. L., Sassim, N. A., Bannwart, A. C. 2017. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers. Exp Therm Fluid Sci, 85: 37-51.
 
Murakami, M., Minemura, K. 1974a. Effects of entrained air on the performance of a centrifugal pump: 1st report, performance and flow conditions. Bull JSME, 17: 1047-1055.
 
Murakami, M., Minemura, K. 1974b. Effects of entrained air on the performance of centrifugal pumps: 2nd report, effects of number of blades. Bull JSME, 17: 1286-1295.
 
Murakami, M., Minemura, K. 1983. Behavior of air bubbles in an axial-flow pump impeller. J Fluids Eng, 105: 277-283.
 
Ofuchi, E. M., Cubas, J. M. C., Stel, H., Dunaiski, R., Vieira, T. S., Morales, R. E. M. 2020. A new model to predict the head degradation of centrifugal pumps handling highly viscous flows. J Petrol Sci Eng, 187: 106737.
 
Parikh, T., Mansour, M., Thévenin, D. 2020. Investigations on the effect of tip clearance gap and inducer on the transport of air-water two-phase flow by centrifugal pumps. Chem Eng Sci, 218: 115554.
 
Paternost, G. M., Bannwart, A. C., Estevam, V. 2015. Experimental study of a centrifugal pump handling viscous fluid and two-phase flow. SPE Prod Oper, 30: 146-155.
 
Pessoa, R., Prado, M. 2003. Two-phase flow performance for electrical submersible pump stages. SPE Prod Facil, 18: 13-27.
 
Poullikkas, A. 2000. Two phase flow performance of nuclear reactor cooling pumps. Prog Nucl Energ, 36: 123-130.
 
Prince, M. J., Blanch, H. W. 1990. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J, 36: 1485-1499.
 
Roghair, I., van Sint Annaland, M., Kuipers, H. J. A. M. 2013. Drag force and clustering in bubble swarms. AIChE J, 59: 1791-1800.
 
Rzehak, R., Krepper, E. 2013. CFD modeling of bubble-induced turbulence. Int J Multiphase Flow, 55: 138-155.
 
Schäfer, T., Neumann-Kipping, M., Bieberle, A., Bieberle, M., Hampel, U. 2020. Ultrafast X-ray computed tomography imaging for hydrodynamic investigations of gas-liquid two-phase flow in centrifugal pumps. J Fluids Eng, 142: 041502.
 
Si, Q., Bois, G., Liao, M., Zhang, H., Cui, Q., Yuan, S. 2020. A comparative study on centrifugal pump designs and two-phase flow characteristic under inlet gas entrainment conditions. Energies, 13: 65.
 
Si, Q., Zhang, H., Bois, G., Zhang, J., Cui, Q., Yuan, S. 2019. Experimental investigations on the inner flow behavior of centrifugal pumps under inlet air-water two-phase conditions. Energies, 12: 4377.
 
Stel, H., Amaral, G. D. L., Negrão, C. O. R., Chiva, S., Estevam, V., Morales, R. E. M. 2013. Numerical analysis of the fluid flow in the first stage of a two-stage centrifugal pump with a vaned diffuser. J Fluids Eng, 135: 071104.
 
Stel, H., Ofuchi, E. M., Alves, R. F., Chiva, S., Morales, R. E. M. 2020a. Experimental analysis of gas-liquid flows in a centrifugal rotor. J Fluids Eng, 142: 031101.
 
Stel, H., Ofuchi, E. M., Chiva, S., Morales, R. E. M. 2020b. Numerical simulation of gas-liquid flows in a centrifugal rotor. Chem Eng Sci, 221: 115692.
 
Stel, H., Ofuchi, E. M., Sabino, R. H., Ancajima, F. C., Bertoldi, D., Marcelino Neto, M. A., Morales, R. E. M. 2019. Investigation of the motion of bubbles in a centrifugal pump impeller. J Fluids Eng, 141: 031203.
 
Stel, H., Sirino, T., Ponce, F. J., Chiva, S., Morales, R. E. M. 2015. Numerical investigation of the flow in a multistage electric submersible pump. J Petrol Sci Eng, 136: 41-54.
 
Tomiyama, A. 1998. Struggle with computational bubble dynamics. Multiphase Sci Tech, 10: 369-405.
 
Trevisan, F. E., Prado, M. 2011. Experimental investigation of the viscous effect on two-phase-flow patterns and hydraulic performance of electrical submersible pumps. J Can Petrol Technol, 50: 45-52.
 
Yamoah, S., Martínez-Cuenca, R., Monrós, G., Chiva, S., Macián-Juan, R. 2015. Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow. Chem Eng Res Des, 98: 17-35.
 
Yeoh, G. H., Tu, J. Y. 2010. Computational Techniques for Multi-phase Flows. Oxford: Butterworth-Heinemann.
 
Zhu, J., Zhang, H.-Q. 2017. Numerical study on electrical-submersible-pump two-phase performance and bubble-size modeling. SPE Prod Oper, 32: 267-278.
 
Zhu, J., Zhu, H., Zhang, J., Zhang, H.-Q. 2019. A numerical study on flow patterns inside an electrical submersible pump (ESP) and comparison with visualization experiments. J Petrol Sci Eng, 173: 339-350.
Experimental and Computational Multiphase Flow
Pages 221-240
Cite this article:
Stel H, Ofuchi EM, Chiva S, et al. Numerical assessment of performance characteristics and two-phase flow dynamics of a centrifugal rotor operating under gas entrainment condition. Experimental and Computational Multiphase Flow, 2022, 4(3): 221-240. https://doi.org/10.1007/s42757-020-0089-8

744

Views

8

Crossref

11

Web of Science

11

Scopus

Altmetrics

Received: 01 May 2020
Revised: 04 September 2020
Accepted: 12 October 2020
Published: 18 January 2021
© Tsinghua University Press 2020
Return