AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Liquid-liquid flow through micro dimensional reactors: A review on hydrodynamics, mass transfer, and reaction kinetics

Pooja JaiswalUttam KumarKoushik Guha Biswas( )
Department of Chemical Engineering & Engineering Science, Rajiv Gandhi Institute of Petroleum Technology, An Institute of National Importance, Jais, India
Show Author Information

Abstract

Liquid-liquid flow through compact geometries has been gaining importance in recent time. It is encountered in the pharmaceutical industry and fine chemicals industry where high throughput separation is required. The extraction and kinetic process for two-phase systems can be enhanced by working in micro dimensions due to the higher interfacial area. Liquid-liquid flow in miniature channels varies from macro channels due to the difference of forces that act along with the interface like the effect of inertia and gravity is less prominent as compared to surface tension forces. The current work presents a comprehensive review of liquid-liquid flow particularly in micro dimensions and focuses on flow visualization studies, mass transfer, and pressure drop investigations. The main uniqueness in this review work is that a comprehensive study dealing with transport processes in a microdomain is reported in a detailed fashion with all important findings which can be a base for the starting of experimental investigations in these micro dimensions. Micro dimensions are current techniques for process intensification which plays a very important role in any process industries. A detailed critical review has been included in the review which suggests that micro dimensions serve an effective tool for process intensification.

References

 
Abdollahi, A., Norris, S. E., Sharma, R. N. 2020. Pressure drop and film thickness of liquid-liquid Taylor flow in square microchannels. Int J Heat Mass Tran, 156: 119802.
 
Abdollahi, A., Sharma, R. N., Vatani, A. 2017. Fluid flow and heat transfer of liquid-liquid two phase flow in microchannels: A review. Int Commun Heat Mass, 84: 66-74.
 
Ahmed-Omer, B., Brandt, J. C., Wirth, T. 2007. Advanced organic synthesis using microreactor technology. Org Biomol Chem, 5: 733-740.
 
Aljbour, S., Yamada, H., Tagawa, T. 2009. Simultaneous reaction-separation in a microchannel reactor with the aid of a guideline structure. International Scholarly and Scientific Research & Innovation, 3: 267-270.
 
Anna, S. L., Bontoux, N., Stone, H. A. 2003. Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett, 82: 364-366.
 
Aoki, N., Tanigawa, S., Mae, K. 2011. A new index for precise design and advanced operation of mass transfer in slug flow. Chem Eng J, 167: 651-656.
 
Arjun, A., Ajith, R. R., Kumar Ranjith, S. 2020. Mixing characterization of binary-coalesced droplets in microchannels using deep neural network. Biomicrofluidics, 14: 034111.
 
Azimian Fereydani, A., Azizi, Z. 2018. Experimental study of extraction fraction and mass transfer coefficient in a microchannel using butyl acetate/acetic acid/water chemical system. J Therm Anal Calorim, 133: 945-950.
 
Bai, Y., Gao, M., Wen, L., He, C., Chen, Y., Liu, C., Fu, X., Huang, S. 2018. Applications of microfluidics in quantitative biology. Biotechnol J, 13: 1700170.
 
Bavière, R., Gamrat, G., Favre-Marinet, M., Le Person, S. 2006. Modeling of laminar flows in rough-wall microchannels. J Fluid Eng, 128: 734-741.
 
Biswas, K. G., Das, G., Ray, S., Basu, J. K. 2015b. Mass transfer characteristics of liquid-liquid flow in small diameter conduits. Chem Eng Sci, 122: 652-661.
 
Biswas, K. G., Das, G., Ray, S., Basu, J. K. 2015c. The use of bends for enhanced mass transfer during liquid-liquid flow through milli channels. Int J Heat Mass Tran, 84: 876-892.
 
Biswas, K. G., Patra, R., Das, G., Ray, S., Basu, J. K. 2015a. Effect of flow orientation on liquid-liquid slug flow in a capillary tube. Chem Eng J, 262: 436-446.
 
Boogar, R. S., Gheshlaghi, R., Mahdavi, M. A. 2013. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels. Korean J Chem Eng, 30: 45-49.
 
Bringer, M. R., Gerdts, C. J., Song, H., Tice, J. D., Ismagilov, R. F. 2004. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil Trans R Soc A, 362: 1087-1104.
 
Burns, J. R., Ramshaw, C. 2001. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip, 1: 10.
 
Caballero-Díaz, E., Simonet, B., Valcárcel, M. 2013. Liquid-liquid extraction assisted by a carbon nanoparticles interface. Electrophoretic determination of atrazine in environmental samples. Analyst, 138: 5913.
 
Cao, C., Xia, G., Holladay, J., Jones, E., Wang, Y. 2004. Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor. Appl Catal A: Gen, 262: 19-29.
 
Cao, Y., Li, J., Jin, Y., Luo, J., Chen, M., Wang, Y. 2019. Liquid-liquid two-phase flow patterns in a new helical microchannel device. Can J Chem Eng, 97: 3175-3184.
 
Chen, R., Feng, H., Zhu, X., Liao, Q., Ye, D., Liu, J., Liu, M., Chen, G., Wang, K. 2018. Interaction of the Taylor flow behaviors and catalytic reaction inside a gas-liquid-solid microreactor under long-term operation. Chem Eng Sci, 175: 175-184.
 
Cherlo, S. K. R., Kariveti, S., Pushpavanam, S. 2010. Experimental and numerical investigations of two-phase (liquid-liquid) flow behavior in rectangular microchannels. Ind Eng Chem Res, 49: 893-899.
 
Chinaud, M., Roumpea, E. P., Angeli, P. 2015. Studies of plug formation in microchannel liquid-liquid flows using advanced particle image velocimetry techniques. Exp Therm Fluid Sci, 69: 99-110.
 
Choi, C., Kim, M. 2011. Flow pattern based correlations of two-phase pressure drop in rectangular microchannels. Int J Heat Fluid Fl, 32: 1199-1207.
 
Coleman, J. W., Garimella, S. 1999. Characterization of two-phase flow patterns in small diameter round and rectangular tubes. Int J Heat Mass Tran, 42: 2869-2881.
 
Cook, S. 2005. Process intensification: Three case studies. Innovations in Pharmaceutical Technology, 17: 54-59.
 
Darekar, M., Singh, K. K., Mukhopadhyay, S., Shenoy, K. T. 2017. Liquid-liquid two-phase flow patterns in Y-junction microchannels. Ind Eng Chem Res, 56: 12215-12226.
 
Der, O., Bertola, V. 2020. An experimental investigation of oil-water flow in a serpentine channel. Int J Multiphase Flow, 129: 103327.
 
Desir, P., Chen, T., Bracconi, M., Saha, B., Maestri, M., Vlachos, D. G. 2020. Experiments and computations of microfluidic liquid-liquid flow patterns. React Chem Eng, 5: 39-50.
 
Dessimoz, A. L., Cavin, L., Renken, A., Kiwi-Minsker, L. 2008. Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chem Eng Sci, 63: 4035-4044.
 
Dessimoz, A.-L., Raspail, P., Berguerand, C., Kiwi-Minsker, L. 2010. Quantitative criteria to define flow patterns in micro-capillaries. Chem Eng J, 160: 882-890.
 
Di Miceli Raimondi, N., Prat, L., Gourdon, C., Cognet, P. 2008. Direct numerical simulations of mass transfer in square microchannels for liquid-liquid slug flow. Chem Eng Sci, 63: 5522-5530.
 
Di Miceli Raimondi, N., Prat, L., Gourdon, C., Tasselli, J. 2014. Experiments of mass transfer with liquid-liquid slug flow in square microchannels. Chem Eng Sci, 105: 169-178.
 
Dummann, G., Quittmann, U., Gröschel, L., Agar, D. W., Wörz, O., Morgenschweis, K. 2003. The capillary-microreactor: A new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions. Catal Today, 79-80: 433-439.
 
Emran, M., Islam, M. A. 2014. Numerical investigation of flow dynamics and heat transfer characteristics in a microchannel heat sink. Procedia Eng, 90: 563-568.
 
Ergu, O. B., Sara, O. N., Yapıcı, S., Arzutug, M. E. 2009. Pressure drop and point mass transfer in a rectangular microchannel. Int Commun Heat Mass, 36: 618-623.
 
Fu, B. R., Pan, C. 2010. Simple channel geometry for enhancement of chemical reactions in microchannels. Ind Eng Chem Res, 49: 9413-9422.
 
Ghaini, A., Kashid, M. N., Agar, D. W. 2010. Effective interfacial area for mass transfer in the liquid-liquid slug flow capillary microreactors. Chem Eng Process: Process Intensif, 49: 358-366.
 
Ghaini, A., Mescher, A., Agar, D. W. 2011. Hydrodynamic studies of liquid-liquid slug flows in circular microchannels. Chem Eng Sci, 66: 1168-1178.
 
Ghosh, S., Das, G., Das, P. K. 2011. Pressure drop analysis for liquid-liquid downflow through vertical pipe. J Fluid Eng, 133: 011202.
 
Giri Nandagopal, M. S., Selvaraju, N. 2016. Prediction of liquid-liquid flow patterns in a Y-junction circular microchannel using advanced neural network techniques. Ind Eng Chem Res, 55: 11346-11362.
 
Gruber, R., Melin, T. 2003. Radial mass-transfer enhancement in bubble-train flow. Int J Heat Mass Tran, 46: 2799-2808.
 
Guo, R., Fu, T., Zhu, C., Ma, Y. 2020. Pressure drop model of gas-liquid flow with mass transfer in tree-typed microchannels. Chem Eng J, 397: 125340.
 
Gupta, A., Kumar, R. 2010. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid, 8: 799-812.
 
Gupta, R., Leung, S. S. Y., Manica, R., Fletcher, D. F., Haynes, B. S. 2013. Hydrodynamics of liquid-liquid Taylor flow in microchannels. Chem Eng Sci, 92: 180-189.
 
Haase, S., Bauer, T., Graf, E. 2020. Gas-liquid flow regime prediction in minichannels: A dimensionless, universally applicable approach. Ind Eng Chem Res, 59: 3820-3838.
 
Halder, R., Lawal, A., Damavarapu, R. 2007. Nitration of toluene in a microreactor. Catal Today, 125: 74-80.
 
Harirchian, T., Garimella, S. V. 2010. A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria. Int J Heat Mass Tran, 53: 2694-2702.
 
Hoffmann, M., Schlüter, M., Räbiger, N. 2006. Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV. Chem Eng Sci, 61: 2968-2976.
 
Hong, Z.-C., Zhen, C.-E., Yang, C.-Y. 2008. Fluid dynamics and heat transfer analysis of three dimensional microchannel flows with microstructures. Numer Heat Tr A: Appl, 54: 293-314.
 
Hsieh, S.-S., Lin, C.-Y., Huang, C.-F., Tsai, H.-H. 2004. Liquid flow in a micro-channel. J Micromech Microeng, 14: 436-445.
 
Hwang, C.-Y. J., Pal, R. 1997. Flow of two-phase oil/water mixtures through sudden expansions and contractions. Chem Eng J, 68: 157-163.
 
Iles, A., Habgood, M., de Mello, A. J., Wootton, R. C. R. 2007. A Simple technique for microfluidic heterogeneous catalytic hydrogenation reactor fabrication. Catal Lett, 114: 71-74.
 
Jana, A. K., Das, G., Das, P. K. 2006. Flow regime identification of two-phase liquid-liquid upflow through vertical pipe. Chem Eng Sci, 61: 1500-1515.
 
Jovanović, J., Rebrov, E. V., Nijhuis, T. A. X., Hessel, V., Schouten, J. C. 2010. Phase-transfer catalysis in segmented flow in a microchannel: Fluidic control of selectivity and productivity. Ind Eng Chem Res, 49: 2681-2687.
 
Jovanović, J., Zhou, W., Rebrov, E. V., Nijhuis, T. A., Hessel, V., Schouten, J. C. 2011. Liquid-liquid slug flow: Hydrodynamics and pressure drop. Chem Eng Sci, 66: 42-54.
 
Judy, J., Maynes, D., Webb, B. W. 2002. Characterization of frictional pressure drop for liquid flows through microchannels. Int J Heat Mass Tran, 45: 3477-3489.
 
Kashid, M. N., Agar, D. W. 2007. Hydrodynamics of liquid-liquid slug flow capillary microreactor: Flow regimes, slug size and pressure drop. Chem Eng J, 131: 1-13.
 
Kashid, M. N., Harshe, Y. M., Agar, D. W. 2007. Liquid-liquid slug flow in a capillary: An alternative to suspended drop or film contactors. Ind Eng Chem Res, 46: 8420-8430.
 
Kashid, M. N., Renken, A., Kiwi-Minsker, L. 2011. Influence of flow regime on mass transfer in different types of microchannels. Ind Eng Chem Res, 50: 6906-6914.
 
Kashid, M., Kiwi-Minsker, L. 2011. Quantitative prediction of flow patterns in liquid-liquid flow in micro-capillaries. Chem Eng Process: Process Intensif, 50: 972-978.
 
Kikutani, Y., Horiuchi, T., Uchiyama, K., Hisamoto, H., Tokeshi, M., Kitamori, T. 2002. Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis. Lab Chip, 2: 188-192.
 
Kim, S. C., Clark, I. C., Shahi, P., Abate, A. R. 2018. Single-cell RT-PCR in microfluidic droplets with integrated chemical lysis. Anal Chem, 90: 1273-1279.
 
Kiwi-Minsker, L., Renken, A. 2005. Microstructured reactors for catalytic reactions. Catal Today, 110: 2-14.
 
Kohl, M. J., Abdel-Khalik, S. I., Jeter, S. M., Sadowski, D. L. 2005. An experimental investigation of microchannel flow with internal pressure measurements. Int J Heat Mass Tran, 48: 1518-1533.
 
Kralj, J. G., Sahoo, H. R., Jensen, K. F. 2007. Integrated continuous microfluidic liquid-liquid extraction. Lab Chip, 7: 256-263.
 
Kumar, U., Panda, D., Biswas, K. G. 2018. Non-lithographic copper-wire based fabrication of micro-fluidic reactors for biphasic flow applications. Chem Eng J, 344: 221-227.
 
Lee, W. Y., Wong, M., Zohar, Y. 2002. Pressure loss in constriction microchannels. J Microelectromech S, 11: 236-244.
 
Lee, W., Son, G. 2008. Bubble dynamics and heat transfer during nucleate boiling in a microchannel. Numer Heat Tr A: Appl, 53: 1074-1090.
 
Li, X., Chen, X., Huang, Y., Zhang, X. 2019a. Effect of interface wettability on the flow characteristics of liquid in smooth microchannels. Acta Mech, 230: 2111-2123.
 
Li, X., Wang, W., Zhang, P., Li, J., Chen, G. 2019b. Interactions between gas-liquid mass transfer and bubble behaviours. R Soc Open Sci, 6: 190136.
 
Liu, D., Garimella, S. V. 2004. Investigation of liquid flow in microchannels. J Thermophys Heat Tr, 18: 65-72.
 
Liu, H., Yao, C., Zhao, Y., Chen, G. 2017. Desorption of carbon dioxide from aqueous MDEA solution in a microchannel reactor. Chem Eng J, 307: 776-784.
 
Liu, M., Zhu, X., Chen, R., Liao, Q., Feng, H., Li, L. 2016. Catalytic membrane microreactor with Pd/γ-Al2O3 coated PDMS film modified by dopamine for hydrogenation of nitrobenzene. Chem Eng J, 301: 35-41.
 
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., Beebe, D. J. 2000. Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech S, 9: 190-197.
 
Liu, Y., Wang, S. 2019. Distribution of gas-liquid two-phase slug flow in parallel micro-channels with different branch spacing. Int J Heat Mass Tran, 132: 606-617.
 
Liu, Z. M., Pang, Y., Shen, F., Li, J., Fu, S. 2011. Effects of geometry on the liquid flow in microchannel. AIP Conf Proc, 1376: 619-622
 
Lohokare, S. R., Bhusare, V. H., Joshi, J. B. 2015. Process intensification: A case study. Indian Chemical Engineer, 57: 202-218.
 
Mondal, P., Ghosh, S., Das, G., Ray, S. 2010. Phase inversion and mass transfer during liquid-liquid dispersed flow through mini-channel. Chem Eng Process: Process Intensif, 49: 1051-1057.
 
Naher, S., Orpen, D., Brabazon, D., Poulsen, C. R., Morshed, M. M. 2011. Effect of micro-channel geometry on fluid flow and mixing. Simul Model Pract Th, 19: 1088-1095.
 
Ngo, T. L., Kato, Y., Nikitin, K., Ishizuka, T. 2007. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles. Exp Therm Fluid Sci, 32: 560-570.
 
Oh, J.-T., Choi, K.-I., Chien, N.-B. 2015. Pressure drop and heat transfer during a two-phase flow vaporization of propane in horizontal smooth minichannels. In: Heat Transfer Studies and Applications. IntechOpen, DOI: 10.5772/60813.
 
Olivieri, G., Marzocchella, A., Salatino, P. 2003. Hydrodynamics and mass transfer in a lab-scale three-phase internal loop airlift. Chem Eng J, 96: 45-54.
 
Ou, J., Perot, B., Rothstein, J. P. 2004. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids, 16: 4635-4643.
 
Paul, K., Bhattacharjee, P. 2018. Mass transfer and hydrodynamic study of supercritical carbon dioxide extraction of 1, 8-cineole from small cardamom seeds. Chem Eng Commun, 205: 1023-1033.
 
Pham, H., Wen, L., Zhang, H. 2012. Numerical simulation and analysis of gas-liquid flow in a T-junction microchannel. Adv Mech Eng, 4: 231675.
 
Pietrzak, M. 2014. Flow patterns and volume fractions of phases during liquid-liquid two-phase flow in pipe bends. Exp Therm Fluid Sci, 54: 247-258.
 
Qian, J., Li, X., Gao, Z., Jin, Z. 2019a. Mixing efficiency analysis on droplet formation process in microchannels by numerical methods. Processes, 7: 33.
 
Qian, J., Li, X., Gao, Z., Jin, Z. 2019b. Mixing efficiency and pressure drop analysis of liquid-liquid two phases flow in serpentine microchannels. J Flow Chem, 9: 187-197.
 
Qian, J., Li, X., Wu, Z., Jin, Z., Zhang, J., Sunden, B. 2019. Slug formation analysis of liquid-liquid two-phase flow in T-junction microchannels. J Thermal Sci Eng Appl, 11: 051017.
 
Rai, A., Anand, M., Farooqui, S. A., Sibi, M. G., Sinha, A. K. 2018. Kinetics and computational fluid dynamics study for Fischer-Tropsch synthesis in microchannel and fixed-bed reactors. React Chem Eng, 3: 319-332.
 
Raj, R., Mathur, N., Buwa, V. V. 2010. Numerical simulations of liquid-liquid flows in microchannels. Ind Eng Chem Res, 49: 10606-10614.
 
Ramji, S., Rakesh, A., Pushpavanam, S. 2019. Modelling mass transfer in liquid-liquid slug flow in a microchannel. Chem Eng J, 364: 280-291.
 
Rane, T. D., Chen, L., Zec, H. C., Wang, T. H. 2015. Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP). Lab Chip, 15: 776-782.
 
Razaghi, R., Saidi, M. H. 2016. Experimental investigation of drag and lift forces on microparticles in low Reynolds number poiseuille flow in microchannel. J Disper Sci Technol, 37: 1767-1777.
 
Renardy, Y., Joseph, D. D. 1985. Couette flow of two fluids between concentric cylinders. J Fluid Mech 150: 381-394.
 
Rosen, A. M., Krylov, V. S. 1967. The scaling up of mass-transfer equipment and reactors: Use of hydraulic model experiments. Chem Eng Sci, 22: 407-416.
 
Rouge, A., Spoetzl, B., Gebauer, K., Schenk, R., Renken, A. 2001. Microchannel reactors for fast periodic operation: the catalytic dehydration of isopropanol. Chem Eng Sci, 56: 1419-1427.
 
Šalić, A., Tušek, A., Zelić, B. 2012. Application of microreactors in medicine and biomedicine. J Appl Biomed, 10: 137-153.
 
Salim, A., Fourar, M., Pironon, J., Sausse J. 2008. Oil-water two-phase flow in microchannels: Flow patterns and pressure drop measurements. Can J Chem Eng, 86: 978-988.
 
Sarkar, P. S., Singh, K. K., Shenoy, K. T., Sinha, A., Rao, H., Ghosh, S. K. 2012. Liquid-liquid two-phase flow patterns in a serpentine microchannel. Ind Eng Chem Res, 51: 5056-5066.
 
Sattari-Najafabadi, M., Nasr Esfahany, M., Wu, Z., Sundén, B. 2017. The effect of the size of square microchannels on hydrodynamics and mass transfer during liquid-liquid slug flow. AIChE J, 63: 5019-5028.
 
Serizawa, A., Feng, Z., Kawara, Z. 2002. Two-phase flow in microchannels. Exp Therm Fluid Sci, 26: 703-714.
 
Shao, H., Lü, Y., Wang, K., Luo, G. 2012. An experimental study of liquid-liquid microflow pattern maps accompanied with mass transfer. Chin J Chem Eng, 20: 18-26.
 
Shui, L., Eijkel, J. C. T., van den Berg, A. 2007. Multiphase flow in microfluidic systems—Control and applications of droplets and interfaces. Adv Colloid Interface Sci, 133: 35-49.
 
Singh, K. K., Renjith, A. U., Shenoy, K. T. 2015. Liquid-liquid extraction in microchannels and conventional stage-wise extractors: A comparative study. Chem Eng Process: Process Intensif, 98: 95-105.
 
Soboll, S., Kockmann, N. 2018. Hydrodynamics and mass transfer in a lab-scale stirred-pulsed extraction column. Chem Eng Tech, 41: 1847-1856.
 
Su, Y., Chen, G., Zhao, Y., Yuan, Q. 2009. Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel. AIChE J, 55: 1948-1958.
 
Su, Y., Zhao, Y., Chen, G., Yuan, Q. 2010. Liquid-liquid two-phase flow and mass transfer characteristics in packed microchannels. Chem Eng Sci, 65: 3947-3956.
 
Suo, M., Griffith, P. 1964. Two-phase flow in capillary tubes. J Basic Eng, 86: 576-582.
 
Talapuru, S., Eromo, A. C. 2013. Phase transfer catalysis in micro channels, milli channels and fine droplets column: Effective interfacial area. In: Proceedings of the AIChE Annual Meeting.
 
Thulasidas, T. C., Abraham, M. A., Cerro, R. L. 1997. Flow patterns in liquid slugs during bubble-train flow inside capillaries. Chem Eng Sci, 52: 2947-2962.
 
Tsaoulidis, D., Angeli, P. 2015. Effect of channel size on mass transfer during liquid-liquid plug flow in small scale extractors. Chem Eng J, 262: 785-793.
 
Ufer, A., Mendorf, M., Ghaini, A., Agar, D. W. 2011. Liquid/liquid slug flow capillary microreactor. Chem Eng Tech, 34: 353-360.
 
Wang, T., Xu, C. 2020. Liquid-liquid-liquid three-phase microsystem: Hybrid slug flow-laminar flow. Lab Chip, 20: 1891-1897.
 
Wang, X., Wang, Y., Li, F., Li, L., Ge, X., Zhang, S., Qiu, T. 2020. Scale-up of microreactor: Effects of hydrodynamic diameter on liquid-liquid flow and mass transfer. Chem Eng Sci, 226: 115838.
 
Watts, P., Haswell, S. J. 2005. The application of micro reactors for organic synthesis. Chem Soc Rev, 34: 235.
 
Weigl, B. H., Bardell, R. L., Kesler, N., Morris, C. J. 2001. Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces— Computational fluid dynamics model results and fluidic verification experiments. Fresenius J Anal Chem, 371: 97-105.
 
Woitalka, A., Kuhn, S., Jensen, K. F. 2014. Scalability of mass transfer in liquid-liquid flow. Chem Eng Sci, 116: 1-8.
 
Wong, S. H., Bryant, P., Ward, M., Wharton, C. 2003. Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies. Sensor Actuat B: Chem, 95: 414-424.
 
Wu, Z., Sundén, B. 2019. Liquid-liquid two-phase flow patterns in ultra-shallow straight and serpentine microchannels. Heat Mass Transfer, 55: 1095-1108.
 
Xia, G. D., Jiang, J., Wang, J., Zhai, Y. L., Ma, D. D. 2015. Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks. Int J Hea Mass Tran, 80: 439-447.
 
Xu, J. H., Tan, J., Li, S. W., Luo, G. S. 2008. Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels. Chem Eng J, 141: 242-249.
 
Yagodnitsyna, A. A., Kovalev, A. V., Bilsky, A. V. 2016. Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction. Chem Eng J , 303: 547-554.
 
Yao, C., Ma, H., Zhao, Q., Liu, Y., Zhao, Y., Chen, G. 2020. Mass transfer in liquid-liquid Taylor flow in a microchannel: Local concentration distribution, mass transfer regime and the effect of fluid viscosity. Chem Eng Sci, 223: 115734.
 
Yong, J. Q., Teo, C. J. 2014. Mixing and heat transfer enhancement in microchannels containing converging-diverging passages. J Heat Transfer, 136: 041704.
 
Zhang, L., Liu, Z., Wang, Y., Xie, R., Ju, X., Wang, W., Lin, L., Chu, L. 2017. Facile immobilization of Ag nanoparticles on microchannel walls in microreactors for catalytic applications. Chem Eng J, 309: 691-699.
 
Zhang, X., Chen, D., Wang, Y., Cai, W. 2012. Liquid-liquid two-phase flow patterns and mass transfer characteristics in a circular microchannel. Adv Mater Res, 482-484: 89-94.
 
Zhang, X., Stefanick, S., Villani, F. J. 2004. Application of microreactor technology in process development. Org Proc Res Dev, 8: 455-460.
 
Zhang, X., Zhao, T., Wu, S., Yao, F. 2019. Experimental study on liquid flow and heat transfer in rough microchannels. Adv Cond Matter Phys, 2019: 1-9.
 
Zhang, Y. 2018. On study of application of micro-reactor in chemistry and chemical field. IOP Conf Ser: Earth Environ Sci, 113: 012003.
 
Zhang, Y., Jiang, H.-R. 2016. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future. Anal Chimica Acta, 914: 7-16.
 
Zhao, Y., Chen, G., Yuan, Q. 2006. Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE J, 52: 4052-4060.
 
Zhao, Y., Chen, G., Yuan, Q. 2007. Liquid-liquid two-phase mass transfer in the T-junction microchannels. AIChE J, 53: 3042-3053.
Experimental and Computational Multiphase Flow
Pages 193-211
Cite this article:
Jaiswal P, Kumar U, Biswas KG. Liquid-liquid flow through micro dimensional reactors: A review on hydrodynamics, mass transfer, and reaction kinetics. Experimental and Computational Multiphase Flow, 2022, 4(3): 193-211. https://doi.org/10.1007/s42757-020-0092-0

786

Views

7

Crossref

10

Web of Science

9

Scopus

Altmetrics

Received: 22 May 2020
Revised: 26 September 2020
Accepted: 22 October 2020
Published: 19 January 2021
© Tsinghua University Press 2020
Return