AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Validation experiments on bubbling fluidization of Group B glass particles

Avinash Vaidheeswaran1,2( )Cheng Li1,3Huda Ashfaq1,3Xiongjun Wu1,2Steven Rowan1,2William A. Rogers1
National Energy Technology Laboratory, Morgantown, WV, USA
LRST, Morgantown, WV, USA
Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
Show Author Information

Abstract

Results from validation experiments on bubbling fluidization are presented. The tests were performed in three cylindrical columns having internal diameters of 2.5, 4, and 6 inches. The systems were designed to have considerably higher particle counts compared to the commonly used validation experiments found in published literature. Well-characterized glass particles having a Sauter mean diameter of 332 μm were used. The superficial velocity of air at the inlet was specified at five distinct settings in the range of 0.235-0.423 m/s corresponding to 2.97-5.35 Umf, where Umf = 0.079 m/s is the minimum fluidization velocity measured in the 2.5-inch unit. A systematic procedure was followed for each column involving five replicates of the selected inflow conditions in a randomized order. Uncertainty measures are provided for mean and standard deviation of differential pressure, while the statistics of interface height are reported with pixel threshold dependence. Overall, the findings from these experiments are consistent with the previous studies. The datasets generated are critical to assess coarse-grained modeling techniques developed for large-scale applications like Particle-In-Cell or Coarse-Grained Discrete Element Model, as well as elucidating the underlying physics.

References

 
Abanades, J. C., Anthony, E. J., Wang, J., Oakey, J. E. 2005. Fluidized bed combustion systems integrating CO2 capture with CaO. Environ Sci Technol, 39: 2861-2866.
 
Arbel, A., Huang, Z., Rinard, I. H., Shinnar, R., Sapre, A. V. 1995. Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current generation of FCC’s. Ind Eng Chem Res, 34: 1228-1243.
 
Bi, H. T., Ellis, N., Abba, I. A., Grace, J. R. 2000. A state-of-the-art review of gas-solid turbulent fluidization. Chem Eng Sci, 55: 4789-4825.
 
Bi, X. 1994. Flow regime transitions in gas-solid fluidization and transport. Ph.D. Thesis. Available at https://open.library.ubc.ca/ cIRcle/collections/ubctheses/831/items/1.0058621.
 
Bonniol, F., Sierra, C., Occelli, R., Tadrist, L. 2009. Similarity in dense gas-solid fluidized bed, influence of the distributor and the air-plenum. Powder Technol, 189: 14-24.
 
Broadhurst, T. E., Becker, H. A. 1975. Onset of fluidization and slugging in beds of uniform particles. AIChE J, 21: 238-247.
 
Choi, K. Y., Harmon Ray, W. 1985. The dynamic behaviour of fluidized bed reactors for solid catalysed gas phase olefin polymerization. Chem Eng Sci, 40: 2261-2279.
 
Cooley, J. W., Tukey, J. W. 1965. An algorithm for the machine calculation of complex Fourier series. Math Comp, 19: 297-301.
 
Cranfield, R. R., Geldart, D. 1974. Large particle fluidisation. Chem Eng Sci, 29: 935-947.
 
Delebarre, A. 2002. Does the minimum fluidization exist? J Fluid Eng, 124: 595-600.
 
Di Felice, R., Gibilaro, L. G. 2004. Wall effects for the pressure drop in fixed beds. Chem Eng Sci, 59: 3037-3040.
 
Di Maio, F. P., di Renzo, A. 2013. Verification of scaling criteria for bubbling fluidized beds by DEM-CFD simulation. Powder Technol, 248: 161-171.
 
Du, B., Warsito, W., Fan, L. S. 2005. ECT studies of gas-solid fluidized beds of different diameters. Ind Eng Chem Res, 44: 5020-5030.
 
Efhaima, A., Al-Dahhan, M. H. 2017. Bed diameter effect on the hydrodynamics of gas-solid fluidized beds via radioactive particle tracking (RPT) technique. Can J Chem Eng, 95: 744-756.
 
Eisfeld, B., Schnitzlein, K. 2001. The influence of confining walls on the pressure drop in packed beds. Chem Eng Sci, 56: 4321-4329.
 
Frye, C. G., Lake, W. C., Eckstrom, H. C. 1958. Gas-solid contacting with ozone decomposition reaction. AIChE J, 4: 403-408.
 
Gao, X., Yu, J., Li, C., Panday, R., Xu, Y., Li, T., Ashfaq, H., Hughes, B., Rogers, W. A. 2020. Comprehensive experimental investigation on biomass-glass beads binary fluidization: a data set for CFD model validation. AIChE J, 66: e16843.
 
Gel, A., Vaidheeswaran, A., Musser, J., Tong, C. H. 2018. Toward the development of a verification, validation, and uncertainty quantification framework for granular and multiphase flows— part 1: screening study and sensitivity analysis. J Verif Valid Uncert, 3: 031001.
 
Geldart, D. 1973. Types of gas fluidization. Powder Technol, 7: 285-292.
 
Geldart, D. 2004. Expansion of gas fluidized beds. Ind Eng Chem Res, 43: 5802-5809.
 
Gibilaro, L. G. 2001. Fluidization Dynamics. Elsevier.
 
Glicksman, L. R. 1984. Scaling relationships for fluidized beds. Chem Eng Sci, 39: 1373-1379.
 
Goldschmidt, M. J. V., Beetstra, R., Kuipers, J. A. M. 2004. Hydrodynamic modelling of dense gas-fluidised beds: Comparison and validation of 3D discrete particle and continuum models. Powder Technol, 142: 23-47.
 
Gopalan, B., Shahnam, M., Panday, R., Tucker, J., Shaffer, F., Shadle, L., Mei, J., Rogers, W., Guenther, C., Syamlal, M. 2016. Measurements of pressure drop and particle velocity in a pseudo 2-D rectangular bed with Geldart Group D particles. Powder Technol, 291: 299-310.
 
Grace, J. R., Sun, G. 1991. Influence of particle size distribution on the performance of fluidized bed reactors. Can J Chem Eng, 69: 1126-1134.
 
Guardiola, J., Ramos, G., Elvira, R. 2013. Measuring the height of a fluidized bed by computer vision. Chem Eng Sci, 95: 33-42.
 
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., et al. 2020. Array programming with NumPy. Nature, 585: 357-362.
 
Higham, J. E., Shahnam, M., Vaidheeswaran, A. 2018. On the dynamics of a quasi-two-dimensional pulsed-fludized bed. arXiv preprint arXiv:1809.05033. Available at https://arxiv.org/ abs/1809.05033.
 
Horio, M., Nonaka, A., Sawa, Y., Muchi, I. 1986. A new similarity rule for fluidized bed scale-up. AIChE J, 32: 1466-1482.
 
Kelkar, V. V., Ng, K. M. 2002. Development of fluidized catalytic reactors: Screening and scale-up. AIChE J, 48: 1498-1518.
 
Khongprom, P., Ratchasombat, S., Wanchan, W., Bumphenkiattikul, P., Limtrakul, S. 2020. Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations. RSC Adv, 10: 2897-2914.
 
Kraft, S., Kuba, M., Hofbauer, H. 2018. The behavior of biomass and char particles in a dual fluidized bed gasification system. Powder Technol, 338: 887-897.
 
Kunii, D.; Levenspiel, O. 1991. Fluidization Engineering. Butterworth-Heinemann.
 
Link, J. M., Deen, N. G., Kuipers, J. A. M., Fan, X., Ingram, A., Parker, D. J., Wood, J., Seville, J. P. K. 2008. PEPT and discrete particle simulation study of spout-fluid bed regimes. AIChE J, 54: 1189-1202.
 
Lu, L., Gao, X., Shahnam, M., Rogers, W. A. 2020. Bridging particle and reactor scales in the simulation of biomass fast pyrolysis by coupling particle resolved simulation and coarse grained CFD-DEM. Chem Eng Sci, 216: 115471.
 
Lu, L., Morris, A., Li, T., Benyahia, S. 2017. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds. Int J Heat Mass Transf, 111: 723-735.
 
Lu, L., Xu, J., Ge, W., Yue, Y., Liu, X., Li, J. 2014. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows. Chem Eng Sci, 120: 67-87.
 
Matsen, J. M. 1996. Scale-up of fluidized bed processes: Principle and practice. Powder Technol, 88: 237-244.
 
Müller, C. R., Holland, D. J., Sederman, A. J., Scott, S. A., Dennis, J. S., Gladden, L. F. 2008. Granular temperature: Comparison of magnetic resonance measurements with discrete element model simulations. Powder Technol, 184: 241-253.
 
Oberkampf, W. L., Smith, B. L. 2017. Assessment criteria for computational fluid dynamics model validation experiments. J Verif Valid Uncert, 2: 031002.
 
Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE T Syst Man Cy, 9: 62-66.
 
Penn, A., Boyce, C. M., Kovar, T., Tsuji, T., Pruessmann, K. P., Müller, C. R. 2018. Real-time magnetic resonance imaging of bubble behavior and particle velocity in fluidized beds. Ind Eng Chem Res, 57: 9674-9682.
 
PTC, A. C. 2009. 60 2008 ANSI Standard V&V 20 Guide for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. Available at https://www.asme.org/codes-standards/ find-codes-standards/v-v-20-standard-verification-validation-computational-fluid-dynamics-heat-transfer.
 
Rao, A., Curtis, J. S., Hancock, B. C., Wassgren, C. 2010. The effect of column diameter and bed height on minimum fluidization velocity. AIChE J, 56: 2304-2311.
 
Salatino, P., Solimene, R. 2017. Mixing and segregation in fluidized bed thermochemical conversion of biomass. Powder Technol, 316: 29-40.
 
Sanderson, P., Wang, X., Rhodes, M., Lim, S. 2007. An investigation of fluidized bed scaling laws by DEM simulation. Fluidization XII - New horizons in fluidization engineering. In: Proceedings of the 12th International Conference on Fluidization, 671-678.
 
Schnitzlein, M. G., Weinstein, H. 1988. Flow characterization in high-velocity fluidized beds using pressure fluctuations. Chem Eng Sci, 43: 2605-2614.
 
Schouten, J., van der Stappen, M., van den bleek, C. 1996. Scale-up of chaotic fluidized bed hydrodynamics. Chem Eng Sci, 51: 1991-2000.
 
Snider, D. M. 2001. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J Comput Phys, 170: 523-549.
 
Sobrino, C., Sánchez-Delgado, S., García-Hernando, N., de Vega, M. 2008. Standard deviation of absolute and differential pressure fluctuations in fluidized beds of group B particles. Chem Eng Res Des, 86: 1236-1242.
 
Stein, M., Ding, Y., Seville, J., Parker, D. 2000. Solids motion in bubbling gas fluidised beds. Chem Eng Sci, 55: 5291-5300.
 
Vaidheeswaran, A., Pandey, R., Clarke, M. A., Ashfaq, H., Rogers, W. A. 2020. Fluidization of Group A glass particles: Experiments and preliminary validation. Technical Report. National Energy Technology Laboratory, United States. Available at https://doi.org/ 10.2172/1632859.
 
Vaidheeswaran, A., Rowan, S. 2021. Chaos and recurrence analyses of pressure signals from bubbling fluidized beds. Chaos, Soliton Fract, 142: 110354.
 
Vaidheeswaran, A., Shaffer, F., Gopalan, B. 2017. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser. Phys Rev Fluid, 2: 112301.
 
Van den Bleek, C. M., Schouten, J. C. 1993. Deterministic chaos: a new tool in fluidized bed design and operation. The Chemical Engineering Journal and the Biochemical Engineering Journal, 53: 75-87.
 
Villa Briongos, J., Guardiola, J. 2005. New methodology for scaling hydrodynamic data from a 2D-fluidized bed. Chem Eng Sci, 60: 5151-5163.
 
Wu, B., Yu, G., Bellehumeur, C., Kantzas, A. 2007. Dynamic flow behavior measurements in gas-solid fluidized beds using different non-intrusive techniques and polyethylene powder. Flow Meas Instrum, 18: 197-203.
 
Wu, G., Wang, Q., Zhang, K., Wu, X. 2016a. CFD simulation of hydrodynamics and heat transfer for scale-up of the jetting fluidized beds. Powder Technol, 304: 120-133.
 
Wu, K., de Martín, L., Mazzei, L., Coppens, M. O. 2016b. Pattern formation in fluidized beds as a tool for model validation: A two-fluid model based study. Powder Technol, 295: 35-42.
 
Zhang, Y., Jia, Y., Xu, J., Wang, J., Duan, C., Ge, W., Zhao, Y. 2020. CFD intensification of coal beneficiation process in gas-solid fluidized beds. Chem Eng Process, 148: 107825.
Experimental and Computational Multiphase Flow
Pages 264-273
Cite this article:
Vaidheeswaran A, Li C, Ashfaq H, et al. Validation experiments on bubbling fluidization of Group B glass particles. Experimental and Computational Multiphase Flow, 2022, 4(3): 264-273. https://doi.org/10.1007/s42757-021-0108-4

681

Views

7

Crossref

7

Web of Science

7

Scopus

Altmetrics

Received: 24 September 2020
Revised: 28 January 2021
Accepted: 11 March 2021
Published: 14 July 2021
© Tsinghua University Press 2021
Return