AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Numerical assessment of LES subgrid-scale turbulence models for expandable particles in fire suppression

Ivan Miguel De Cachinho Cordeiro1Hengrui Liu1Anthony Chun Yin Yuen1( )Timothy Bo Yuan Chen1Ao Li1Guan Heng Yeoh1,2
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Australian Nuclear Science and Technology Organization (ANSTO), Kirrawee DC, NSW 2232, Australia
Show Author Information

Abstract

Owing to the well-established Eulerian–Lagrangian framework on mixture fluids, computational fluid dynamics coupled with discrete element model (CFD–DEM) is an effective while appropriate tool to predict the complex interactive fire behaviours associate with suppression effects. Although suppression behaviours between hydrocarbon-fuelled fire and water-based suppression agents were extensively studied both numerically and experimentally, lack of numerical studies was conducted on fires involving water-reactive chemicals (i.e., Na, Li, and LiH), where extinguishment is barely performed by water-based active suppression system, as violent and explosive decomposition occurred between water and reactive fuel. In this research, a numerical investigation has been conducted on expandable graphite (EG) application for water-reactive fire suppression. Based on the discrete phase model (DPM) framework, a novel EG particle model is proposed to characterise the particle expansion that couples with superior thermal properties and chemical stability. A numerical assessment on large eddy simulation (LES) has been performed to study the temporal fire behaviours and the suppression effect of EG against the flame plume in various subgrid-scale (SGS) models. Four SGS models were adopted, which were namely Smagorinsky–Lilly, WALE, dynamic kinetic energy, and dynamic Smagorinsky–Lilly. As a result, the WALE SGS model was observed to be in a better agreement compared with the experimental data owing to its significant enhancement in flow diffusivity modelling. The WALE SGS model has achieved a more accurate temperature prediction and finer resolved turbulence compared with other SGS models.

References

 
Beji, T., Zadeh, S. E., Maragkos, G., Merci, B. 2017. Influence of the particle injection rate, droplet size distribution and volume flux angular distribution on the results and computational time of water spray CFD simulations. Fire Safety J, 91: 586595.
 
Ben-Nasr, O., Hadjadj, A., Chaudhuri, A., Shadloo, M. S. 2017. Assessment of subgrid-scale modeling for large-eddy simulation of a spatially-evolving compressible turbulent boundary layer. Comput Fluids, 151: 144158.
 
Cai, M., Thorpe, D., Adamson, D. H., Schniepp, H. C. 2012. Methods of graphite exfoliation. J Mater Chem, 22: 24992.
 
Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang, W. 2018a. Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. Int J Heat Mass Tran, 125: 310322.
 
Chen, T. B. Y., Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang W., Lu, H. 2018b. Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. Comput Sci, 24: 823.
 
Chen, Q., Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Chan, Q. N., Yeoh, G. H. 2020. Investigation of door width towards flame tilting behaviours and combustion species in compartment fire scenarios using large eddy simulation. Int J Heat Mass Tran, 150: 119373.
 
Chung, D. D. L. 1987. Exfoliation of graphite. J Mater Sci, 22: 41904198.
 
Clarke, J. T., Fox, B. R. 1969. Rate and heat of vaporization of graphite above 3000°K. J Chem Phys, 51: 32313240.
 
DiNenno, P. J., Drysdale, D., Beyler, C., et al. 2008. SFPE Handbook of Fire Protection Engineering, 4th edn. Quincy, MA, USA: SFPE
 
Drysdale, D. 2011. An Introduction to Fire Dynamics. Chichester, UK: John Wiley & Sons.
 
Germano, M., Piomelli, U., Moin, P., Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A-Fluid, 3: 17601765.
 
Hinze, J. O. 1975. Turbulence. New York, USA: McGraw-Hill.
 
Kakka, P., Anupindi, K. 2020. Assessment of subgrid-scale models for large-eddy simulation of a planar turbulent wall-jet with heat transfer. Int J Heat Mass Tran, 153: 119593.
 
Kim, W. W., Menon, S., Kim, W. W., Menon., S. 1997. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. In: Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.
 
Knio, O. M., Najm, H. N., Wyckoff, P. S. 1999. A semi-implicit numerical scheme for reacting flow: II. stiff, operator-split formulation. J Comput Phys, 154: 428467.
 
Li, A., Yuen, A. C. Y., Wang, W., De Cachinho Cordeiro, I. M., Wang, C., Chen, T. B. Y., Zhang, J., Chan, Q. N., Yeoh, G. H. 2021. A review on lithium-ion battery separators towards enhanced safety performances and modelling approaches. Molecules, 26: 478.
 
Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A-Fluid, 4: 633635.
 
Liu, H., Wang, C., de Cachinho Cordeiro, I. M., Yuen, A. C. Y., Chen, Q., Chan, Q., Kook, S., Yeoh, G. H. 2020. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. J Build Eng, 28: 100999.
 
Liu, H., Yuen, A. C. Y., de Cachinho Cordeiro, I. M., Han, Y., Yuan Chen, T. B., Chan, Q., Kook, S., Yeoh, G. H. 2021. A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numer Heat Tr A-Appl, 79: 570593.
 
Ma, J., Wang, F., Tang, X. 2009. Comparison of several subgrid-scale models for large-eddy simulation of turbulent flows in water turbine. In: Fluid Machinery and Fluid Mechanics, Xu, J., Wu, Y., Zhang, Y., Zhang, J. Eds. Berlin, Heidelberg, Germany: Springer.
 
McAllister, M. J., Li, J. L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Milius, D. L., Car, R., Prud'homme, R. K., et al. 2007. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19: 43964404.
 
McGrattan, K. B., Rehm, R. G., Baum, H. R. 1994. Fire-driven flows in enclosures. J Comput Phys, 110: 285291.
 
McGrattan, K. B., Baum, H. R., Rehm, R. G. 1998. Large eddy simulations of smoke movement. Fire Safety J, 30: 161178.
 
Morsi, S. A., Alexander, A. J. 1972. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech, 55: 193.
 
Ni, X., Zheng, Z. 2020. Extinguishment of sodium fires with Graphite@Stearate core-shell structured particles. Fire Safety J, 111: 102933.
 
Nicoud, F., Ducros, F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust, 62: 183200.
 
Pang, X. Y., Song, M. K., Tian, Y., Duan, M. W. 2012. Preparation of high dilatability expandable graphite and its flame retardancy for lldpe. J Chil Chem Soc, 57: 13181322.
 
Pang, X., Tian, Y., Duan, M., Zhai, M. 2013. Preparation of low initial expansion temperature expandable graphite and its flame retardancy for LLDPE. Cent Eur J Chem, 11: 953959.
 
Peng, T., Liu, B., Gao, X., Luo, L., Sun, H. 2018. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite. Appl Surf Sci, 444: 800810.
 
Rehm, R. G., Baum, H. R. 1978. The equations of motion for thermally driven, buoyant flows. Journal of Research National Bureau Standards, 83: 297.
 
Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon Weather Rev, 91: 99164.
 
Vilfayeau, S., Myers, T., Marshall, A. W., Trouvé, A. 2017. Large eddy simulation of suppression of turbulent line fires by base-injected water mist. Proc Combust Inst, 36: 32873295.
 
Vovchenko, L. L., Matzui, L. Y., Kulichenko, A. A. 2007. Thermal characterization of expanded graphite and its composites. Inorg Mater, 43: 597601.
 
Wang, Z., Wang, W., Wang, Q. 2016. Optimization of water mist droplet size by using CFD modeling for fire suppressions. J Loss Prev Process Ind, 44: 626632.
 
Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T., Chen, Q., Cao, R., Yip, H. L., Kook, S., Yeoh, G. H. 2019. Influence of eddy-generation mechanism on the characteristic of on-source fire whirl. Appl Sci, 9: 3989.
 
Weickert, M., Teike, G., Schmidt, O., Sommerfeld, M. 2010. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput Math Appl, 59: 22002214.
 
White, J. P., Verma, S., Keller, E., Hao, A., Trouvé, A., Marshall, A. W. 2017. Water mist suppression of a turbulent line fire. Fire Safety J, 91: 705713.
 
Yuen, A. C. Y., Yeoh, G. H., Yuen, R. K. K., Chen, T. 2013. Numerical simulation of a ceiling jet fire in a large compartment. Procedia Eng, 52: 312.
 
Yuen, A. C. Y., Yeoh, G. 2013. Numerical simulation of an enclosure fire in a large test hall. Comput Sci, 5: 459471.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Barber, T. J. 2016a. Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Tran, 96: 171188.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chen, T. 2016b. Study of three LES subgrid-scale turbulence models for predictions of heat and mass transfer in large-scale compartment fires. Numer Heat Tr A-Appl, 69: 12231241.
 
Yuen, A. C. Y., Yeoh, G., Timchenko, V., Cheung, S., Chan, Q., Chen, T. 2017a. On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions. Int J Comput Fluid Dyn, 31: 324337.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Chen, T. B. Y., Chan, Q. N., Wang, C., Li, D. D. 2017b. Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int J Heat Mass Tran, 115: 717729.
 
Yang, P., Liu, T., Qin, X. 2010. Experimental and numerical study on water mist suppression system on room fire. Build Environ, 45: 23092316.
 
Yuen, A. C. Y., Chen, T. B. Y., Yeoh, G. H., Yang, W., Cheung, S. C. P., Cook, M., Yu, B., Chan, Q., Yip, H. L. 2018. Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. J Fire Sci, 36: 494517.
 
Yuen, A. C. Y., Chen, T. B. Y., Yang, W., Wang, C., Li, A., Yeoh, G. H., Chan, Q. N., Chan, M. C. 2019. Natural ventilated smoke control simulation case study using different settings of smoke vents and curtains in a large atrium. Fire, 2: 7.
 
Yuen, A. C. Y., Chen, T. B. Y., Wang, C., Wei, W., Kabir, I., Vargas, J. B., Chan, Q. N., Kook, S., Yeoh, G. H. 2020. Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos Part B-Eng, 182: 107619.
 
Zhang, P., Tang, X., Tian, X., Liu, C., Zhong, M. 2016. Experimental study on the interaction between fire and water mist in long and narrow spaces. Appl Therm Engin, 94: 706714.
 
Zhang, T., Bi, M., Jiang, H., Gao, W. 2020. Suppression of aluminum dust explosions by expandable graphite. Powder Technol, 366: 5262.
Experimental and Computational Multiphase Flow
Pages 99-110
Cite this article:
De Cachinho Cordeiro IM, Liu H, Yuen ACY, et al. Numerical assessment of LES subgrid-scale turbulence models for expandable particles in fire suppression. Experimental and Computational Multiphase Flow, 2023, 5(1): 99-110. https://doi.org/10.1007/s42757-021-0112-8

618

Views

10

Crossref

8

Web of Science

12

Scopus

Altmetrics

Received: 02 February 2021
Revised: 23 March 2021
Accepted: 26 April 2021
Published: 23 July 2021
© Tsinghua University Press 2021
Return