AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Multiphase CFD modelling for enclosure fires—A review on past studies and future perspectives

Anthony Chun Yin Yuen1( )Ivan Miguel De Cachinho Cordeiro1Timothy Bo Yuan Chen1Qian Chen1Hengrui Liu1Guan Heng Yeoh1,2
School of Mechanical and Manufacturing Engineering, University of New South Wales, NSW 2052, Sydney, Australia
Australian Nuclear Science and Technology Organization (ANSTO), Kirrawee DC, NSW 2232, Australia
Show Author Information

Abstract

Modern buildings and structures are commonly equipped with fire safety detection and protection systems. Owing to the complexity in building architectures, performance-based fire engineering designs are often applied to achieve safety compliance criteria in stipulated fire events. With the uprising popularity of computer simulation fire predictive models benefited by the rapid improvement in computing speed and modelling techniques, the use of computational fluid dynamics (CFD) based fire field models has become an integrated component in fire tenability and assessment studies. This article delivers a comprehensive review on the history, past developments, and current state-of-the-art of CFD models for enclosure fires, as well as providing an in-depth review on the advancement in other sub-modelling components including turbulence, combustion, radiation, and soot models. Additionally, two types of multiphase modelling approaches involving solid-gas and liquid-gas phase models are reviewed. As for the preceding, the consideration of the solid phase combustibles is generally achieved via pyrolysis modelling under the context of CFD. Recent advancements in CFD-based pyrolysis studies are extensively discussed, including the consideration of porous media, charring layer formation, and kinetics search algorithms to describe the solid decomposition and charring processes. Meanwhile, fire suppression models involving the discrete phase model (DPM) approach are reviewed. This includes previous developments in simulation methods of water droplets, coupling approaches with the fire dynamics in the large eddy simulation (LES) framework. Finally, a future perspective regarding the need to develop a melting/dripping sub-model for building materials is discussed, whose reaction kinetics can be supported by molecular dynamics (MD).

References

 
Akahira, T., Sunuse, T. T. 1971. Joint convention of four electrical institutes. Research Report, Chiba Institute of Technology, Chiba, Japan. Available at https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=118643.
 
Alander, J. T., Autere, A., Mäntykoski, J., Keskinen, K. I. 1994. Distributed genetic algorithm for fitting of model parameters of chemical reaction kinetics. In: Proceedings of the 2nd Finnish Workshop on Genetic Algorithms and Their Applications.
 
Apte, V., Green, A., Kent, J. 1991. Pool fire plume flow in a large-scale wind tunnel. Fire Saf Sci, 3: 425-434.
 
Baum, H. R., Ezekoye, O. A., McGrattan, K. B., Rehm, R. G. 1994. Mathematical modeling and computer simulation of fire phenomena. Theor Comput Fluid Dyn, 6: 125-139.
 
Beji, T., Zadeh, S. E., Maragkos, G., Merci, B. 2017. Influence of the particle injection rate, droplet size distribution and volume flux angular distribution on the results and computational time of water spray CFD simulations. Fire Saf J, 91: 586-595.
 
Bertolino, A., Fürst, M., Stagni, A., Frassoldati, A., Pelucchi, M., Cavallotti, C., Faravelli, T., Parente, A. 2021. An evolutionary, data-driven approach for mechanism optimization: Theory and application to ammonia combustion. Combust Flame, 229: 111366.
 
Bilger, R. W., Kent, J. H. 1972. Measurements in turbulent diffusion flames. Report F41. University of Sydney, Australia.
 
Bilger, R. W. 1980. Turbulent flows with nonpremixed reactants. In: Turbulent Reacting Flows. Libby, P., Williams, F. Eds. Berlin Heidelberg, Germany: Springer, 65-113.
 
Boonmee, N., Quintiere, J. G. 2005. Glowing ignition of wood: The onset of surface combustion. Proc Combust Inst, 30: 2303-2310.
 
Boussinesq, J. 1877. Théorie de I'écoulement tourbillant. Mem Acad Sci, 23: 46. (in French)
 
Bromann, M. 2001. Fire sprinklers: Their history and background. In: The Design and Layout of Fire Sprinkler Systems. Boca Raton, FA, USA: CRC Press, 13-16.
 
Brookes, S. J., Moss, J. B. 1999. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combust Flame, 116: 486-503.
 
Burke, S. P., Schumann, T. E. W. 1928. Diffusion flames. Industrial & Engineering Chemistry, 20: 998-1004.
 
Chandrasekhar, S. 1960. Radiative Transfer. New York, NY, USA: Dover.
 
Chen, C. J., Hsieh, W. D., Hu, W. C., Lai, C., Lin, T. 2010. Experimental investigation and numerical simulation of a furnished office fire. Build Environ, 45: 2735-2742.
 
Chen, Z., Wen, J., Xu, B., Dembele, S. 2014. Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept. Int J Heat Mass Transf, 70: 389-408.
 
Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang, W. 2018a. Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. Int J Heat Mass Transf, 125: 310-322.
 
Chen, T. B. Y., Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C., Chan, Q. N., Yang, W., Lu, H. 2018b. Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. J Comput Sci, 24: 8-23.
 
Chen, T. B. Y., Yuen, A. C. Y., Yeoh, G. H., Yang, W., Chan, Q. N. 2019. Fire risk assessment of combustible exterior cladding using a collective numerical database. Fire, 2: 11.
 
Chen, Q., Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Chan, Q. N., Yeoh, G. H. 2020. Investigation of door width towards flame tilting behaviours and combustion species in compartment fire scenarios using large eddy simulation. Int J Heat Mass Transf, 150: 119373.
 
Chen, T. B. Y., Yuen, A. C. Y., Lin, B., Liu, L., Lo, A. L. P., Chan, Q. N., Zhang, J., Cheung, S. C. P., Yeoh, G. H. 2021. Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics ReaxFF. J Anal Appl Pyrolysis, 153: 104931.
 
Cheung, S. C. P., Yuen, R. K. K., Yeoh, G. H., Cheng, G. W. Y. 2004. Contribution of soot particles on global radiative heat transfer in a two-compartment fire. Fire Saf J, 39: 412-428.
 
Cheung, A. L. K., Lee, E. W. M., Yuen, R. K. K., Yeoh, G. H., Cheung, S. C. P. 2007a. Capturing the pulsation frequency of a buoyant pool fire using the large eddy simulation approach. Numer Heat Tr A-Appl, 53: 561-576.
 
Cheung, S. C. P., Yeoh, G. H., Cheung, A. L. K., Yuen, R. K. K., Lo, S. M. 2007b. Flickering behavior of turbulent buoyant fires using large-eddy simulation. Numer Heat Tr A-Appl, 52: 679-712.
 
Cheung, S. C. P., Yeoh, G. H. 2009. A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire. Int J Therm Sci, 48: 2187-2202.
 
Chow, W. K., Wong, W. K. 1991. A study of the fire aspect of atrium buildings in Hong Kong. In: Fire Safety Science: Proceedings of the Third International Symposium. New York, NY, USA: Taylor & Francis.
 
Chow, W. K. 1993. Numerical studies on the transient behaviour of a fire plume and ceiling jet. Math Comput Model, 17: 71-79.
 
Chow, W. K., Li, J. 2007. Numerical simulations on thermal plumes with k-ε types of turbulence models. Build Environ, 42: 2819-2828.
 
Consalvi, J. L. 2012. Influence of turbulence-radiation interactions in laboratory-scale methane pool fires. Int J Therm Sci, 60: 122-130.
 
Cook, A. W., Rileym, J. J. 1998. Subgrid-scale modeling for turbulent reacting flows. Combust Flame, 112: 593-606.
 
Cox, G. 1983. A field model of fire and its application to nuclear containment problems. CSNI Repprt No. 83. Los Alamos Nalional Laboratory.
 
Cox, G., Kumar, S. 1987. Field modelling of fire in forced ventilated enclosures. Combust Sci Technol, 52: 7-23.
 
Cox, G., Chitty, R., Kumar, S. 1989. Fire modelling and the King’s cross fire investigation. Fire Saf J, 15: 103-106.
 
Criado, J. M., Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A. 2008. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim, 92: 199-203.
 
Darcy, H. 1856. Les fontaines Publiques de la ville de Dijon. Paris, France: Victor Dalmont. (in French)
 
Deardorff, J. W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech, 41: 453-480.
 
Di Blasi, C. 1993. Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog Energy Combust Sci, 19: 71-104.
 
Di Blasi, C., Wichman, I. S. 1995. Effects of solid-phase properties on flames spreading over composite materials. Combust Flame, 102: 229-240.
 
Ding, Y., Wang, C., Lu, S. 2014. Large eddy simulation of fire spread. Procedia Eng, 71: 537-543.
 
Ding, Y., Wang, C., Lu, S. 2015. Modeling the pyrolysis of wet wood using FireFOAM. Energy Convers Manag, 98: 500-506.
 
Ding, Y., Stoliarov, S. I., Kraemer, R. H. 2019. Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition. Combust Flame, 202: 43-57.
 
Drysdale, D. 1986. An Introduction to Fire Dynamics. London, UK: John Wiley & Sons.
 
Drysdale, D. 2011. An Introduction to Fire Dynamics, 3rd edn. London, UK: John Wiley & Sons.
 
Elghobashi, S. E. 1974. Characteristics of gaseous turbulent diffusion flames in cylindrical chambers. Ph.D. Thesis. London University, UK.
 
Elliott, L., Ingham, D. B., Kyne, A. G., Mera, N. S., Pourkashanian, M., Wilson, C. W. 2004. Genetic algorithms for optimisation of chemical kinetics reaction mechanisms. Prog Energy Combust Sci, 30: 297-328.
 
Fang, X., Yuen, A. C. Y., Yeoh, G. H., Lee, E. W. M., Cheung, S. C. P. 2020. Capturing the swirling vortex and the impact of ventilation conditions on small-scale fire whirls. Appl Sci, 10: 3428.
 
Fletcher, D. F., Kent, J. H., Apte, V. B., Green, A. R. 1994. Numerical simulations of smoke movement from a pool fire in a ventilated tunnel. Fire Saf J, 23: 305-325.
 
Foster, J. A. 2001. Evolutionary computation. Nat Rev Genet, 2: 428-436.
 
Frenklach, M., Wang, H. 1991. Detailed modeling of soot particle nucleation and growth. Symp Int Combust, 23: 1559-1566.
 
Friedman, H. L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Pol Sym, 6: 183-195.
 
Gascoin, N., Romagnosi, L., Fedioun, I., Steelant, J., Fau, G., Bouchez, M. 2013. Pyrolysis in porous media: Part 2. Numerical analysis and comparison to experiments. J Porous Media, 16: 857-873.
 
Germano, M., Piomelli, U., Moin, P., Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A-Fluid, 3: 1760-1765.
 
Grange, N., Chetehouna, K., Gascoin, N., Coppalle, A., Reynaud, I., Senave, S. 2018. One-dimensional pyrolysis of carbon based composite materials using FireFOAM. Fire Saf J, 97: 66-75.
 
Gutiérrez-Montes, C., Sanmiguel-Rojas, E., Viedma A., Rein G. 2009. Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium. Build Environ, 44: 1827-1839.
 
Gutiérrez-Montes, C., Sanmiguel-Rojas, E., Viedma, A. 2010. Influence of different make-up air configurations on the fire-induced conditions in an atrium. Build Environ, 45: 2458-2472.
 
Harris, S. J., Maricq, M. M. 2002. The role of fragmentation in defining the signature size distribution of diesel soot. J Aerosol Sci, 33: 935-942.
 
Hasemi, Y. 1977. Numerical calculation of the natural convection in fire compartment. Building Research Institute, Ministry of Construction, Japan. Available at https://www.kenken.go.jp/english/contents/publications/paper/069.html.
 
Hassan, M. A. 1996. A theoretical simulation of fire extinction by water spray in a computer cabinet. Appl Math Model, 20: 804-813.
 
Haynes, B. S., Wagner, H. G. 1981. Soot formation. Prog Energy Combust Sci, 7: 229-273.
 
Hoffmann, N., Markatos, N. C. 1988. Thermal radiation effects on fires in enclosures. Appl Math Model, 12: 129-140.
 
Hu, Z., Utiskul, Y., Quintiere, J. G., Trouve, A. 2007. Towards large eddy simulations of flame extinction and carbon monoxide emission in compartment fires. Proc Combust Inst, 31: 2537-2545.
 
Hua, J., Kumar, K., Khoo, B. C., Xue, H. 2002. A numerical study of the interaction of water spray with a fire plume. Fire Saf J, 37: 631-657.
 
Imbert, B., Lafosse, F., Catoire, L., Paillard, C. É., Khasainov, B. 2008. Formulation reproducing the ignition delays simulated by a detailed mechanism: Application to n-heptane combustion. Combust Flame, 155: 380-408.
 
Ira, J., Hasalová, L., Šálek, V., Jahoda, M., Vystrčil, V. 2020. Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling. Fire Technol, 56: 1099-1132.
 
ISO. 2015. ISO 5660-1:2015, Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate cone calorimeter method and smoke production rate dynamic measurement. Geneva, Switzerland: International Organization for Standardization (ISO). Available at https://www.iso.org/standard/57957.html.
 
Janicka, J., Kollmann, W. 1980. A prediction model for turbulent diffusion flames including NO-formation. In: Combustor Medlling. Paris, France: Advisory Group for Aerospace Research and Development (AGARD).
 
Jia, F., Galea, E. R., Patel, M. K. 1999. The numerical simulation of the noncharring pyrolysis process and fire development within a compartment. Appl Math Model, 23: 587-607.
 
Jones, W. P., McGuirk, J. J. 1980. Computation of a round turbulent jet discharging into a confined cross-flow. Turbul Shear flows, 2: 233.
 
Jujuly, M. M., Rahman, A., Ahmed, S., Khan, F. 2015. LNG pool fire simulation for domino effect analysis. Reliab Eng Syst Saf, 143: 19-29.
 
Kang, Y., Wen, J. X. 2004. Large eddy simulation of a small pool fire. Combust Sci Technol, 176: 2193-2223.
 
Karagiannidis, S., Mantzaras, J. 2010. Numerical investigation on the start-up of methane-fueled catalytic microreactors. Combust Flame, 157: 1400-1413.
 
Kashiwagi, T. 1994. Polymer combustion and flammability—Role of the condensed phase. Symp Int Combust, 25: 1423-1437.
 
Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., et al. 2000. CHEMKIN Collection, Release 3.6. Reaction Design, Inc., San Diego, CA, US. Available at https://www3.nd.edu/~powers/ame.60636/chemkin2000.pdf.
 
Kempel, F., Schartel, B., Marti, J. M., Butler, K. M., Rossi, R., Idelsohn, S. R., Oñate, E., Hofmann, A. 2015. Modelling the vertical UL 94 test: Competition and collaboration between melt dripping, gasification and combustion. Fire Mater, 39: 570-584.
 
Kent, J. H., Bilger, R. W. 1977. The prediction of turbulent diffusion flame fields and nitric oxide formation. Symp Int Combust, 16: 1643-1656.
 
Keramida, E. P., Karayannis, A. N., Boudouvis, A. G., Markatos, N. C. 2000. Numerical modeling of radiant heat attenuation through water mist. Combust Sci Technol, 159: 351-371.
 
Khalil, E. E. K. H. 1977. Flow and combustion in axisymmetric furnaces. Ph.D. Thesis. London University, UK.
 
Khan, I. M., Greeves, G., Probert, D. M. 1971. Prediction of soot and nitric oxide concentrations in diesel engine exhaust. Air Pollut Control Transp Engines C, 142: 205-217.
 
Khan, M. M., Tewarson, A., Chaos, M. 2016. Combustion characteristics of materials and generation of fire products. In: SFPE Handbook of Fire Protection Engineering. Hurley, M. J., et al. Eds. New York, NY, USA: Springer, 1143-1232.
 
Kim, S. C., Ryou, H. S. 2003. An experimental and numerical study on fire suppression using a water mist in an enclosure. Build Environ, 38: 1309-1316.
 
Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal Chem, 29: 1702-1706.
 
Ku, A. C., Doria, M. L., Lloyd, J. R. 1977. Numerical modeling of unsteady bouyant flows generated by fire in a corridor. Symp Int Combust, 16: 1373-1384.
 
Kuo, K. K. 1986. Principles of Combustion. New York, NY, USA: John Wiley & Sons.
 
Launder, B. E., Spalding, D. B. 1972. Lectures in Mathematical Models of Turbulence. New York, NY, USA: Academic Press.
 
Launder, B. E., Spalding, D. B. 1974. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng, 3: 269-289.
 
Lautenberger, C. 2007. A generalized pyrolysis model for combustible solids. Ph.D. Thesis. University of California, Berkeley, USA.
 
Lautenberger, C., Fernandez-Pello, C. 2009. Generalized pyrolysis model for combustible solids. Fire Saf J, 44: 819-839.
 
Leung, K. M., Lindstedt, R. P., Jones, W. P. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame, 87: 289-305.
 
Lewis, M., Moss, J., Rubini, P. 1997. CFD modelling of combustion and heat transfer in compartment fires. Fire Saf Sci, 5: 463-474.
 
Li, A., Yuen, A. C. Y., Wang, W., De Cachinho Cordeiro, I. M., Wang, C., Chen, T. B. Y., Zhang, J., Chan, Q. N., Yeoh, G. H. 2021. A Review on lithium-ion battery separators towards enhanced safety performances and modelling approaches. Molecules, 26: 478.
 
Li, S. C., Williams, F. A. 2002. Reaction mechanisms for methane ignition. J Eng Gas Turbines Power, 124: 471-480.
 
Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A-Fluid, 4: 633-635.
 
Lin, B., Yuen, A. C. Y., Chen, T. B. Y., Yu, B., Yang, W., Zhang, J., Yao, Y., Wu, S., Wang, C., Yeoh, G. H. 2021. Experimental and numerical perspective on the fire performance of MXene/Chitosan/Phytic acid coated flexible polyurethane foam. Sci Rep, 11: 4684.
 
Liu, X., Chen, Y., Huang, Q., He, W., Feng, Q., Yu, B. 2014. A novel thermo-sensitive hydrogel based on thiolated chitosan/ hydroxyapatite/beta-glycerophosphate. Carbohydr Polym, 110: 62-69.
 
Liu, H., Wang, C., de Cachinho Cordeiro, I. M., Yuen, A. C. Y., Chen, Q., Chan, Q., Kook, S., Yeoh, G. H. 2020. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. J Build Eng, 28: 100999.
 
Liu, H., Yuen, A. C. Y., de Cachinho Cordeiro, I. M., Han, Y., Chen, T. B. Y., Chan, Q., Kook, S., Yeoh, G. H. 2021. A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numer Heat Tr A-Appl, 79: 570-593.
 
Lockwood, F. C., Naguib, A. S. 1975. The prediction of the fluctuations in the properties of free, round-jet, turbulent, diffusion flames. Combust Flame, 24: 109-124.
 
Lockwood, F. C., Shah, N. G. 1981. A new radiation solution method for incorporation in general combustion prediction procedures. Symp Int Combust, 18: 1405-1414.
 
Luo, M., Beck, V. 1996. A study of non-flashover and flashover fires in a full-scale multi-room building. Fire Saf J, 26: 191-219.
 
Magnussen, B. F., Hjertager, B. H. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp Int Combust, 16: 719-729.
 
Manring, L. E. 1988. Thermal degradation of saturated polymethyl methacrylate. Macromolecules, 21: 528-530.
 
Marchisio, D. L., Fox, R. O. 2005. Solution of population balance equations using the direct quadrature method of moments. J Aerosol Sci, 36: 43-73.
 
Markatos, N. C., Malin, M. R., Cox, G. 1982. Mathematical modelling of buoyancy-induced smoke flow in enclosures. Int J Heat Mass Transf, 25: 63-75.
 
MCA. 2015. SOLAS Chapter II-2, Construction-fire protection, fire detection and fire extinction. UK: Maritime and Coastguard Agency (MCA). Available at https://www.gov.uk/government/publications/solas-chapter-ii-2.
 
McCaffrey, B. J. 1979. Purely buoyant diffusion flames: Some experimental results. National Bureau of Standards, Washington DC, USA. Available at https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir79-1910.pdf.
 
McGrattan, K. B., Rehm, R. G., Baum, H. R. 1994. Fire-driven flows in enclosures. J Comput Phys, 110: 285-291.
 
McGrattan, K. B., Baum, H. R., Rehm, R. G. 1996. Numerical simulation of smoke plumes from large oil fires. Atmos Environ, 30: 4125-4136.
 
McGrattan, K. B., Baum, H. R., Rehm, R. G. 1998. Large eddy simulations of smoke movement. Fire Saf J, 30: 161-178.
 
McGrattan, K. B., Baum, H. R., Rehm, R. G., Hamins, A., Forney, G. P., Floyd, J. E., Hostikka, S., Prasad, K. 2000. Fire dynamics simulator—Technical reference guide. National Institute of Standards, Washington DC, USA. Available at https://github.com/firemodels/fds/releases/download/FDS6.7.6/FDS_Technical_Reference_Guide.pdf.
 
Mell, W., Charney, J., Jenkins, M. A., Cheney, P., Gould, J. 2013. Numerical simulations of grassland fire behavior from the LANL-FIRETEC and NIST-WFDS models. In: Remote Sensing and Modeling Applications to Wildland Fires. Qu, J. J., Sommers, W. T., Yang, R., et al. Eds. Berlin, Heidelberg, Germany: Springer, 209-225.
 
Moghtaderi, B. 2006. The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels. Fire Mater, 30: 1-34.
 
Moinuddin, K., Razzaque, Q. S., Thomas, A. 2020. Numerical simulation of coupled pyrolysis and combustion reactions with directly measured fire properties. Polymers, 12: 2075.
 
Montazeri, H., Blocken, B., Hensen, J. L. M. 2015. Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis. Build Environ, 83: 129-141.
 
Morrisset, D., Hadden, R. M., Bartlett, A. I., Law, A., Emberley, R. 2021. Time dependent contribution of char oxidation and flame heat feedback on the mass loss rate of timber. Fire Saf J, 120: 103058.
 
Moss, J. B., Stewart, C. D., Syed, K. J. 1989. Flowfield modelling of soot formation at elevated pressure. Symp Int Combust, 22: 413-423.
 
Most, J. M., Harivel, N., Joulain, P., Ruttun, B., Sztal, B. 1982. Influence of a turbulent diffusion flame on transport phenomena to a reacting surface. Symp Int Combust, 19: 375-386.
 
Nam, S. 1996. Development of a computational model simulating the interaction between a fire plume and a sprinkler spray. Fire Saf J, 26: 1-33.
 
Nam, S. 1999. Numerical simulation of the penetration capability of sprinkler sprays. Fire Saf J, 32: 307-329.
 
Nguyen, H. T., Nguyen, K. T. Q., Le, T. C., Zhang, G. 2021. Review on the use of artificial intelligence to predict fire performance of construction materials and their flame retardancy. Molecules, 26: 1022.
 
Ni, X., Zheng, Z. 2020. Extinguishment of sodium fires with Graphite@Stearate core-shell structured particles. Fire Saf J, 111: 102933.
 
Nicoud, F., Ducros, F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul Combust, 62: 183-200.
 
Novozhilov, V. 2001. Computational fluid dynamics modeling of compartment fires. Prog Energy Combust Sci, 27: 611-666.
 
Novozhilov, V. 2007. Fire suppression studies. Therm Sci, 11: 161-180.
 
Ozisik, M. N. 1973. Radiative Transfer and Interactions with Conduction and Convection. New York, USA: John Wiley & Sons.
 
Pan, R., Duque, J. V. F., Debenest, G. 2021. Investigating waste plastic pyrolysis kinetic parameters by genetic algorithm coupled with thermogravimetric analysis. Waste Biomass Valorization, 12: 2623-2637.
 
Peeters, J., Mahnen, G. 1973. Reaction mechanisms and rate constants ofelementary steps in methane-oxygen flames. Symp Int Combust, 14: 133-146.
 
Peng, T., Liu, B., Gao, X., Luo, L., Sun, H. 2018. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite. Appl Surf Sci, 444: 800-810.
 
Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust Sci, 10: 319-339.
 
Protocol, M. 1987. Montreal protocol on substances that deplete the ozone layer. US Government Printing Office, Washington, DC. Available at https://treaties.un.org/doc/Treaties/1989/01/19890101%2003-25%20AM/Ch_XXVII_02_ap.pdf.
 
Rein, G., Lautenberger, C., Fernandez-Pello, A. C., Torero, J. L., Urban, D. L. 2006. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame, 146: 95-108.
 
Rein, G. 2016. Smoldering combustion. In: SFPE Handbook of Fire Protection Engineering. Hurley, M. J., et al. Eds. New York, NY, USA: Springer, 581-603.
 
Ren, N., Wang, Y., Vilfayeau, S., Truvé, A. 2013. Large eddy simulation of turbulent wall fires. In: Proceedings ot the 8th US National Combustion Meeting, Salt Lake City, UT, USA.
 
Rhodes, R. P., Harsha, P. T., Peters, C. E. 1974. Turbulent kinetic energy analyses of hydrogen-air diffusion flames. Acta Astronaut, 1: 443-470.
 
Rodi, W. 1985. Calculation of stably stratified shear layer flows with a buoyancy-extended k-ε episolon turbulence model. Turbul Diffus Stable Environ, 1985: 111-140.
 
Romagnosi, L., Gascoin, N., El-Tabach, E., Fedioun, I., Bouchez, M., Steelant, J. 2013. Pyrolysis in porous media: Part 1. Numerical model and parametric study. Energy Convers Manag, 68: 63-73.
 
Ryder, N. L., Schemel, C. F., Jankiewicz, S. P. 2006. Near and far field contamination modeling in a large scale enclosure: Fire Dynamics Simulator comparisons with measured observations. J Hazard Mater, 130: 182-186.
 
Saddawi, A., Jones, J. M., Williams, A., Wójtowicz, M. A. 2010. Kinetics of the thermal decomposition of biomass. Energy Fuels, 24: 1274-1282.
 
Safarzadeh, M., Heidarinejad, G., Pasdarshahri, H. 2021. Evaluation of LES sub-grid scale models and time discretization schemes for prediction of convection effect in a buoyant pool fire. Heat Mass Transf, 57: 631-646.
 
Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., Criado, J. M. 2013. Limitations of model-fitting methods for kinetic analysis: Polystyrene thermal degradation. Resour Conserv Recycl, 74: 75-81.
 
Schuster, A. 1905. Radiation through a foggy atmosphere. Astrophys J Lett, 21: 1.
 
Schwarzschild, K. 1906. On the equilibrium of the sun's atmosphere. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Math.-phys. Klasse, 195: 41-53.
 
Shen, T. S., Huang, Y. H., Chien, S. 2008. Using fire dynamic simulation FDS to reconstruct an arson fire scene. Build Environ, 43: 1036-1045.
 
Sikanen, T., Vaari, J., Hostikka, S., Paajanen, A. 2014. Modeling and simulation of high pressure water mist systems. Fire Technol, 50: 483-504.
 
Simcox, S., Wilkes, N. S., Jones, I. P. 1992. Computer simulation of the flows of hot gases from the fire at King’s Cross Underground station. Fire Saf J, 18: 49-73.
 
Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon Weather Rev, 91: 99-164.
 
Snegirev, A. Y., Talalov, V. A., Stepanov, V. V., Harris, J. N. 2013. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J, 59: 132-150.
 
Sodja, J. 2007. Turbulence models in CFD. University of Ljubljana. Available at http://www-f1.ijs.si/~rudi/sola/Turbulence-models-in-CFD.pdf.
 
Spalding, D. B. 1971. Mixing and chemical reaction in steady confined turbulent flames. Symp Int Combust, 13: 649-657.
 
Stamm, A. J. 1956. Thermal degradation of wood and cellulose. Ind Eng Chem, 48: 413-417.
 
Stavrakakis, G. M., Markatos, N. C. 2009. Simulation of airflow in one- and two-room enclosures containing a fire source. Int J Heat Mass Transf, 52: 2690-2703.
 
Steckler, K. D., Quintiere, J. G., Rinkinen, W. J. 1982. Flow induced by fire in a compartment. National Bureau of Standards, Washington, DC, USA.
 
Stoliarov, S., Lyon, R. 2008. Thermo-kinetic model of burning for pyrolyzing materials. Fire Saf Sci, 9: 1141-1152.
 
Stoliarov, S. I., Crowley, S., Walters, R. N., Lyon, R. E. 2010. Prediction of the burning rates of charring polymers. Combust Flame, 157: 2024-2034.
 
Sureshkumar, R., Kale, S. R., Dhar, P. L. 2008. Heat and mass transfer processes between a water spray and ambient air-II. Simulations. Appl Therm Eng, 28: 361-371.
 
Swann, J. D., Stoliarov, S. I. 2021. Determination of pyrolysis and combustion properties of polyvinylidene fluoride using comprehensive modeling: Relating heat transfer to the intumescent char’s porous structure. Fire Saf J, 120: 103086.
 
Syed, K. J., Stewart, C. D., Moss, J. B. 1991. Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames. Symp Int Combust, 23: 1533-1541.
 
Tamanini, F. 1979. A numerical model for the prediction of radiation- controlled turbulent wall fires. Symp Int Combust, 17: 1075-1085.
 
Tesner, P. A., Smegiriova, T. D., Knorre, V. G. 1971. Kinetics of dispersed carbon formation. Combust Flame, 17: 253-260.
 
Thoo, W. J., Kevric, A., Ng, H. K., Gan, S., Shayler, P., La Rocca, A. 2014. Characterisation of ignition delay period for a compression ignition engine operating on blended mixtures of diesel and gasoline. Appl Therm Eng, 66: 55-64.
 
Tieszen, S. R., Nicolette, V. F., Gritzo, L. A., Moya, J. L., Holen, J. K., Murray, D. 1996. Vortical structures in pool fires: Observation, speculation, and simulation. Office of Scientific and Technical Information (OSTI), USA.
 
Trouvé, A., Wang, Y. 2010. Large eddy simulation of compartment fires. Int J Comput Fluid Dyn, 24: 449-466.
 
Upadhyay, R. R., Ezekoye, O. A. 2008. Treatment of design fire uncertainty using Quadrature Method of Moments. Fire Saf J, 43: 127-139.
 
USDOE. 1994. Primer on spontaneous heating and pyrophoricity. Technical Report. United States Department of Energy (USDOE), Washington DC, USA. Available at https://www.osti.gov/servlets/purl/10196002.
 
Vaari, J., Paajanen, A. 2018. Evaluation of the reactive molecular dynamics method for research on flame retardants: ATH-filled polyethylene. Comput Mater Sci, 153: 103-112.
 
Van Duin, A. C. T., Dasgupta, S., Lorant, F., Goddard, W. A. 2001. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A, 105: 9396-9409.
 
Van Maele, K., Merci, B. 2006. Application of two buoyancy-modified k-ε turbulence models to different types of buoyant plumes. Fire Saf J, 41: 122-138.
 
Vauquelin, O., Wu, Y. 2006. Influence of tunnel width on longitudinal smoke control. Fire Saf J, 41: 420-426.
 
Venkatesh, S., Ito, A., Saito, K., Wichman, I. S. 1996. Flame base structure of small-scale pool fires. Proc Combust Inst, 26: 1437-1443.
 
Vilfayeau, S., Myers, T., Marshall, A. W., Trouvé, A. 2017. Large eddy simulation of suppression of turbulent line fires by base-injected water mist. Proc Combust Inst, 36: 3287-3295.
 
Vreman, A. W. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys Fluids, 16: 3670-3681.
 
Walton, W. D., Thomas, P. H. 1995. Estimating temperatures in compartment fires. In: SFPE Handbook of Fire Protection Engineering. Hurley, M. J., et al. Eds. New York, NY, USA: Springer, 996-1023.
 
Wang, H. Y., Joulain, P., Most, J. M. 1995. Three-dimensional modeling and parametric study of turbulent burning along the walls of a vertical rectangular channel. Combust Sci Technol, 109: 287-308.
 
Wang, H. 2009. Numerical study of under-ventilated fire in medium- scale enclosure. Build Environ, 44: 1215-1227.
 
Wang, Y., Chatterjee, P., de Ris, J. L. 2011. Large eddy simulation of fire plumes. Proc Combust Inst, 33: 2473-2480.
 
Wang, C. J., Wen, J. X., Chen, Z. B., Dembele, S. 2014. Predicting radiative characteristics of hydrogen and hydrogen/methane jet fires using FireFOAM. Int J Hydrog Energy, 39: 20560-20569.
 
Wang, X., Fleischmann, C., Spearpoint, M., Li, K. 2017. A simple hand calculation method to estimate the pyrolysis kinetics of plastic and wood materials. In: Fire Science and Technology 2015. Harada K., et al. Eds. Singapore: Springer, 455-462.
 
Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T. B. Y., Chen, Q., Cao, R., Yip, H. L., Kook, S., Yeoh, G. H. 2019a. Influence of eddy-generation mechanism on the characteristic of on-source fire whirl. Appl Sci, 9: 3989.
 
Wang, C., Yuen, A. C. Y., Chan, Q. N., Chen, T. B. Y., Yang, W., Cheung, S. C. P., Yeoh, G. H. 2019b. Sensitivity analysis of key parameters for population balance based soot model for low-speed diffusion flames. Energies, 12: 910.
 
Wang, C., Yuen, A. C. Y., Chan, Q. N., Chen, T. B. Y., Yang, W., Cheung, S. C. P., Yeoh, G. H. 2020. Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame. J Energy Inst, 93: 112-128.
 
Wen, J. X., Kang, K., Donchev, T., Karwatzki, J. M. 2007. Validation of FDS for the prediction of medium-scale pool fires. Fire Saf J, 42: 127-138.
 
Wen, J. X., Huang, L. Y., Roberts, J. 2001. The effect of microscopic and global radiative heat exchange on the field predictions of compartment fires. Fire Saf J, 36: 205-223.
 
Westbrook, C. K., Dryer, F. L. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust Sci Technol, 27: 31-43.
 
Wolf, D., Moros, R. 1997. Estimating rate constants of heterogeneous catalytic reactions without supposition of rate determining surface steps—An application of a genetic algorithm. Chem Eng Sci, 52: 1189-1199.
 
Xin, Y., Gore, J. P., Mcgrattan, K. B., Rehm, R. G., Baum, H. R. 2002. Large eddy simulation of buoyant turbulent pool fires. Proc Combust Inst, 29: 259-266.
 
Xin, Y., Gore, J. P., McGrattan, K. B., Rehm, R. G., Baum, H. R. 2005. Fire dynamics simulation of a turbulent buoyant flame using a mixture-fraction-based combustion model. Combust Flame, 141: 329-335.
 
Xue, H., Ho, J. C., Cheng, Y. M. 2001. Comparison of different combustion models in enclosure fire simulation. Fire Saf J, 36: 37-54.
 
Yang, K. T., Chang, L. C. 1977. Undsafe-I: A computer code for buoyant flow in an enclosure. Technical Report N 77, NASA STI/Recon, USA.
 
Yang, K. T. 1994. Recent development in field modelling of compartment fires. JSME Int J B, 37: 702-717.
 
Yang, D., Hu, L. H., Jiang, Y. Q., Huo, R., Zhu, S., Zhao, X. Y. 2010a. Comparison of FDS predictions by different combustion models with measured data for enclosure fires. Fire Saf J, 45: 298-313.
 
Yang, P., Liu, T., Qin, X. 2010b. Experimental and numerical study on water mist suppression system on room fire. Build Environ, 45: 2309-2316.
 
Yeoh, G. H., Yuen, R. K. K., Chueng, S. C. P., Kwok, W. K. 2003. On modelling combustion, radiation and soot processes in compartment fires. Build Environ, 38: 771-785.
 
Yeoh, G. H., Tu, J. 2009. Computational Techniques for Multiphase Flows. Oxford, UK: Butterworth-Heinemann, Elsevier.
 
Yuen, R. K. K., Yeoh, G. H., de Vahl Davis, G., Leonardi, E. 2007a. Modelling the pyrolysis of wet wood-I. Three-dimensional formulation and analysis. Int J Heat Mass Transf, 50: 4371-4386.
 
Yuen, R. K. K., Yeoh, G. H., de Vahl Davis, G., Leonardi, E. 2007b. Modelling the pyrolysis of wet wood-II. Three-dimensional cone calorimeter simulation. Int J Heat Mass Transf, 50: 4387-4399.
 
Yuen, A. C. Y., Yeoh, G. H., Alexander, B., Cook, M. 2014a. Fire scene investigation of an arson fire incident using computational fluid dynamics based fire simulation. Build Simul, 7: 477-487.
 
Yuen, A. C. Y., Yeoh, G. H., Alexander, B., Cook, M. 2014b. Fire scene reconstruction of a furnished compartment room in a house fire. Case Stud Fire Saf, 1: 29-35.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Barber, T. J. 2016. Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Transf, 96: 171-188.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Chen, T. B. Y., Chan, Q. N., Wang, C., Li, D. D. 2017. Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int J Heat Mass Transf, 115: 717-729.
 
Yuen, A. C. Y., Yeoh, G. H., Cheung, S. C. P., Chan, Q. N., Chen, T. B. Y., Yang, W., Lu, H. 2018a. Numerical study of the development and angular speed of a small-scale fire whirl. J Comput Sci, 27: 21-34.
 
Yuen, A. C. Y., Chen, T. B. Y., Yeoh, G. H., Yang, W., Cheung, S. C. P., Cook, M., Yu, B., Chan, Q., Yip, H. L. 2018b. Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. J Fire Sci, 36: 494-517.
 
Yuen, A. C. Y., Yang, W., Yeoh, G. H. 2020a. Numerical study of surface regression of a flame retarded expandable polystrene. In: Lecture Notes in Civil Engineering. Wang, C., Ho, J., Kitipornchai, S. Eds. Singapore: Springer, 149-158.
 
Yuen, A. C. Y., Chen, T. B. Y., Wang, C., Wei, W., Kabir, I., Vargas, J. B., Chan, Q. N., Kook, S., Yeoh, G. H. 2020b. Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos Part B-Eng, 182: 107619.
 
Yuen, A. C. Y., Yang, W., Yeoh, G. H. 2020c. Numerical study of surface regression of a flame retarded expandable polystrene. In: ACMSM25. Wang, C., Ho, J., Kitipornchai, S. Eds. Singapore: Springer, 149-158.
 
Yuen, A. C. Y., Chen, T. B. Y., Li, A., De Cachinho Cordeiro, I. M., Liu, L. Liu, H., Lo, A. L. P., Chan, Q. N., Yeoh, G. H. 2021. Evaluating the fire risk associated with cladding panels: An overview of fire incidents, policies, and future perspective in fire standards. Fire Mater, .
 
Zhang, X. L., Vantelon, J. P., Joulain, P. 1993. Thermal radiation from a small-scale pool fire: Influence of externally applied radiation. Combust Flame, 92: 71-84.
 
Zhou, X. 2015. Characterization of interactions between hot air plumes and water sprays for sprinkler protection. Proc Combust Inst, 35: 2723-2729.
Experimental and Computational Multiphase Flow
Pages 1-25
Cite this article:
Yuen ACY, Cordeiro IMDC, Chen TBY, et al. Multiphase CFD modelling for enclosure fires—A review on past studies and future perspectives. Experimental and Computational Multiphase Flow, 2022, 4(1): 1-25. https://doi.org/10.1007/s42757-021-0116-4

950

Views

16

Crossref

16

Web of Science

17

Scopus

Altmetrics

Received: 29 April 2021
Revised: 09 June 2021
Accepted: 25 June 2021
Published: 31 August 2021
© Tsinghua University Press 2021
Return