AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A conservative level set method for liquid–gas flows with application in liquid jet atomisation

Panagiotis Lyras1,2,3Antoine Hubert1,2Konstantinos G. Lyras1,2( )
MultiFluidX, Grigoriou Afxentiou 93, 15770 Athens, Greece
Lyras LP, 24133 Kalamata, Greece
School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Zografou, Greece
Show Author Information

Abstract

In this paper, a methodology for modelling two-phase flows based on a conservative level set method in the framework of finite volume method is presented. The novelty of the interface capturing method used here lies on the advection of level set which is solved with a WENO scheme and corrected with a novel re-initialisation method for retaining its signed distance function character. The coupling with the volume of fluid method is done with a simple algebraic approach, and with the new algorithm the accumulated mass conservation errors remain reasonably low. The paper presents a unique coupling between the level set method and the Eulerian–Lagrangian Spray Atomisation approach for modelling spray dispersion in liquid atomisation systems. The method is shown to have good accuracy providing similar results to other numerical codes for the classical tests presented. Preliminary results are also shown for three-dimensional simulations of the primary break-up of a turbulent liquid jet obtaining results comparable to direct numerical simulations. Consequently, the coupled method can be used for simulating various two-phase flow applications offering an accurate representation of the interface dynamics.

References

 
Agbaglah, G., Delaux, S., Fuster, D., Hoepffner, J., Josserand, C., Popinet, S., Ray, P., Scardovelli, R., Zaleski, S. 2011. Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. CR Mecanique, 339: 194207.
 
Albadawi, A., Donoghue, D. B., Robinson, A. J., Murray, D. B., Delaur, Y. M. C. 2013. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int J Multiphas Flow, 53: 1128.
 
Arienti, M., Sussman, M. 2014. An embedded level set method for sharp-interface multiphase simulations of diesel injectors. Int J Multiphas Flow, 59: 114.
 
Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S. 2003. A geometrical area-preserving volume-of-fluid advection method. J Comput Phys, 192: 355364.
 
Balcázar, N., Jofre, L., Lehmkuhl, O., Castro, J., Rigola, J. 2014. A finite volume/level-set method for simulating two-phase flows on unstructured grids. Int J Multiphas Flow, 64: 5572.
 
Balcázar, N., Lehmkuhl, O., Rigola, J., Oliva, A. 2015. A multiple marker level-set method for simulation of deformable fluid particles. Int J Multiphas Flow, 74: 125142.
 
Bourlioux, A. 1995. A coupled level set and volume of fluid algorithm for tracking material interfaces. In: Proceedings of the 6th International Symposium on Computational Fluid Dynamics, Lake Tahoe, CA, USA.
 
Brackbill, J. U., Kothe, D. B., Zemach, C. 1992. A continuum method for modeling surface tension. J Comput Phys, 100: 335354.
 
Cerquaglia, M. L., Deliege, G., Boman, R., Terrapon, V., Ponthot, J. P. 2017. Free-slip boundary conditions for simulating free-surface incompressible flows through the particle finite element method. Int J Numer Meth Eng, 110: 921946.
 
Chang, Y. C., Hou, T., Merriman, B., Osher, S. 1996. A level set formulation of eulerian interface capturing methods for incompressible fluid flows. J Comput Phys, 124: 449464.
 
Chesnel, J. 2010. Simulation aux Grandes Echelles de l'Atomisation, Application a l'Injection Automobile. Ph.D. Thesis. Universite de Rouen, France. (in French)
 
Chesnel, J., Reveillon, J., Ménard, T., Demoulin, F. X. 2011. Large eddy simulation of liquid jet atomization. Atomization Spray, 21: 711736.
 
Cossali, G. E., Marengo, M., Coghe, A., Zhdanov, S. 2004. The role of time in single drop splash on thin film. Exp Fluids, 36: 888900.
 
Deshpande, S. S., Anumolu, L., Trujillo, M. F. 2012. Evaluating the performance of the two-phase flow solver interFoam. Comput Sci Disc, 5: 014016.
 
Dianat, M., Skarysz, M., Garmory, A. 2017. A coupled level set and volume of fluid method for automotive exterior water management applications. Int J Multiphas Flow, 91: 1938.
 
Duret, B., Reveillon, J., Ménard, T., Demoulin, F. X. 2013. Improving primary atomization modeling through DNS of two-phase flows. Int J Multiphas Flow, 55: 130137.
 
Elias, R. N., Coutinho, A. L. 2007. Stabilized edge-based finite element simulation of free-surface flows. Int J Numer Meth Fl, 54: 965993.
 
Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J Comput Phys, 183: 83116.
 
Ferrari, A., Magnini, M., Thome, J. R. 2017. A flexible coupled level set and volume of fluid (flexCLV) method to simulate microscale two-phase flow in nonuniform and unstructured meshes. Int J Multiphas Flow, 91: 276295.
 
Fuster, D., Bagu, A., Boeck, T., Le Moyne, L., Leboissetier, A., Popinet, S., Ray, P., Scardovelli, R., Zaleski, S. 2009. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method. Int J Multiphas Flow, 35: 550565.
 
Gottlieb, S., Shu, C. W. 1998. Total variation diminishing Runge-Kutta schemes. Math Comput Am Math Soc, 67: 7385.
 
Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., Zaleski, S. 1999. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys, 152: 423456.
 
Haghshenas, M., Wilson, J. A., Kumar, R. 2017. Algebraic coupled level set volume of fluid method for surface tension dominant two-phase flows. Int J Multiphas Flow, 90: 1328.
 
Hartmann, D., Meinke, M., Schroder, W. 2008. Differential equation based constrained reinitialization for level set methods. J Comput Phys, 227: 68216845.
 
Hartmann, D., Meinke, M., Schroder, W. 2010. The constrained reinitialization equation for level set methods. J Comput Phys, 229: 15141535.
 
Hernandez, J., Lopez, J., Gomez, P., Zanzi, C., Faura, F. 2008. A new volume of fluid method in three dimensions—Part I: Multidimensional advection method with face-matched flux polyhedra. Int J Numer Meth Fl, 58: 897921.
 
Hirt, C. W., Nichols, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 39: 201225.
 
Issa, R., Gosman, A. D., Watkins, A. P. 1986. The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J Comput Phys, 62: 6682.
 
Jemison, M., Loch, E., Sussman, M., Shashkov, M., Arienti, M., Ohta, M., Wang, Y. 2013. A coupled level set-moment of fluid method for incompressible two-phase flows. J Sci Comput, 54: 454491.
 
Kees, C. E., Akkerman, I., Farthing, M. W., Bazilevs, Y. 2011. A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys, 230, 45364558.
 
Koshizuka, S., Oka, Y. 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng, 123: 421434.
 
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G. 1994. Modelling merging and fragmentation in multiphase flows with surfer. J Comput Phys, 113: 134147.
 
Lakdawala, A. M., Gada, V. H., Sharma, A. 2014. A dual grid level set method based study of interface-dynamics for a liquid jet injected upwards into another liquid. Int J Multiphas Flow, 59: 206220.
 
Lebas, R., Ménard, T., Beau, P. A., Berlemont, A., Demoulin, F. X. 2009. Numerical simulation of primary break-up and atomization: DNS and modelling study. Int J Multiphas Flow, 35: 247260.
 
LeVeque, R. J. 1996. High-resolution conservative algorithms for advection in incompressible flow. SIAM J Numer Anal, 33: 627665.
 
Li, X. G., Yu, X. J., Chen, G. N. 2002. The third-order relaxation schemes for hyperbolic conservation laws. J Comput Appl Math, 138: 93108.
 
Liovic, P., Rudman, M., Liow, J. L., Lakehal, D., Kothe, D. 2006. A 3D unsplit advection volume tracking algorithm with planarity-preserving interface reconstruction. Comput Fluids, 35: 10111032.
 
Liu, X. D., Osher, S., Chan, T. 1994. Weighted essentially non-oscillatory schemes. J Comput Phys, 115: 200212.
 
Lopez, J., Hernandez, J., Gomez, P., Faura, F. 2005. An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows. J Comput Phys 208: 5174.
 
Lyras, K., Dembele, S., Schmidt, D. P., Wen, J. X. 2018. Numerical simulation of subcooled and superheated jets under thermodynamic non-equilibrium. Int J Multiphas Flow, 102: 1628.
 
Lyras, K. G., Hanson, B., Fairweather, M., Heggs, P. J. 2020. A coupled level set and volume of fluid method with a re-initialisation step suitable for unstructured meshes. J Comput Phys, 407: 109224.
 
Martin, J., Moyce, W. 1952. An experimental study of the collapse of fluid columns on a rigid horizontal plane, in a medium of lower, but comparable, density. Philos T R Soc S-A, 244, 325334.
 
Ménard, T., Tanguy, S., Berlemont, A. 2007. Coupling level set/ VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int J Multiphas Flow, 33: 510524.
 
Navarro-Martinez, S. 2014. Large eddy simulation of spray atomization with a probability density function method. Int J Multiphas Flow, 63: 1122.
 
Olsson, E., Kreiss, G. 2005. A conservative level set method for two phase flow. J Comput Phys, 210: 225246.
 
Olsson, E., Kreiss, G., Zahedi, S. 2007. A conservative level set method for two phase flow II. J Comput Phys, 225: 785807.
 
Osher, S., Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys, 79: 1249.
 
Osher, S., Fedkiw, R. 2006. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer.
 
Pope, S. 2000. Turbulent Flows. UK: Cambridge University Press.
 
Pozzetti, G., Peters, B. 2018. A multiscale DEM-VOF method for the simulation of three-phase flows. Int J Multiphas Flow, 99: 186204.
 
Prosperetti, A., Tryggvason, G. 2009. Computational Methods for Multiphase Flow. New York: Cambridge University Press.
 
Qian, L., Wei, Y., Xiao, F. 2018. Coupled THINC and level set method: A conservative interface capturing scheme with high-order surface representations. J Comput Phys, 373: 284303.
 
Rider, W. J., Kothe, D. B. 1998. Reconstructing volume tracking. J Comput Phys, 141: 112152.
 
Roenby, J., Bredmose, H., Jasak, H. 2016. A computational method for sharp interface advection. Roy Soc Open Sci, 3: 160405.
 
Sandberg, M., Hattel, J. H., Spangenberg, J. 2019. Simulation of liquid composite moulding using a finite volume scheme and the level-set method. Int J Multiphas Flow, 118: 183192.
 
Scardovelli, R., Zaleski, S. 1999. Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech, 31: 567603.
 
Scardovelli, R., Zaleski, S. 2000. Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J Comput Phys, 164: 228237.
 
Sethian, J. A. 1996. Level Set Methods, Evolving Interfaces in Geometry, Fluid Mechanics Computer Vision, and Materials Sciences. Cambridge: Cambridge University Press.
 
Sethian, J. A. 1999. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge: Cambridge University Press.
 
Sussman, M., Puckett, E. G. 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys, 162: 301337.
 
Tanguy, S., Berlemont, A. 2005. Application of a level set method for simulation of droplet collisions. Int J Multiphas Flow, 31: 10151035.
 
Toro E. F. 1997. Splitting schemes for PDEs with source terms. In: Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin, Heidelberg: Springer, 497507.
 
Toro, E. F., Titarev, V. A. 2005. TVD fluxes for the high-order ADER schemes. J Sci Comput, 24: 285309.
 
Tryggvason, G., Scardovelli, R., Zaleski, S. 2011. Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge: Cambridge University Press.
 
Vallet, A., Borghi, R. 1999. Modélisation eulerienne de l'atomisation d'un jet liquide. CR Acad Bulg Sci II B-Mech Phys Astr, 327: 10151020. (in French)
 
Vallet, A., Burluka, A. A., Borghi, R. 2001. Development of a eulerian model for the “atomization” of a liquid jet. Atomization Spray, 11: 619642.
 
Wang, Z., Yang, J., Koo, B., Stern, F. 2009. A coupled level set and volume of fluid method for sharp interface simulation of plunging breaking waves. Int J Multiphas Flow, 35: 227246.
 
Weller, H. G., Tabor, G., Jasak, H., Fureby, C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. J Comput Phys, 12: 620631.
 
Xiao, F., Ii, S., Chen, C. 2011. Revisit to the THINC scheme: A simple algebraic VOF algorithm. J Comput Phys, 230: 70867092.
 
Xie, B., Xiao, F. 2017. Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature. J Comput Phys, 349: 415440.
 
Yokoi, K. 2007. Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm. J Comput Phys, 226: 19852002.
 
Zhao, L. H., Mao, J., Liu, X. Q., Bai, X., Willims, J. 2014. Improved conservative level set method for free surface flow simulation. J Hydrodyn, 26: 316325.
 
Zhao, Y., Chen, H. C. 2017. A new coupled level set and volume-of-fluid method to capture free surface on an overset grid system. Int J Multiphas Flow, 90: 144155.
Experimental and Computational Multiphase Flow
Pages 67-83
Cite this article:
Lyras P, Hubert A, Lyras KG. A conservative level set method for liquid–gas flows with application in liquid jet atomisation. Experimental and Computational Multiphase Flow, 2023, 5(1): 67-83. https://doi.org/10.1007/s42757-021-0119-1

643

Views

13

Crossref

13

Web of Science

14

Scopus

Altmetrics

Received: 07 February 2021
Revised: 01 June 2021
Accepted: 22 July 2021
Published: 26 November 2021
© Tsinghua University Press 2021
Return