AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Soot: A review of computational models at different length scales

Darson D. Li1,( )Cheng Wang1,( )Qing N. Chan1Guan H. Yeoh1,2
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW 2232, Australia

† Darson D. Li and Cheng Wang contributed equally to this work.

Show Author Information

Abstract

The computational modelling of soot formation and destruction during the combustion process is one of the most challenging topics in combustion research. This paper reviews the numerical soot models constructed at different length scales, including macroscale, mesoscale, and microscale. The four key stages of soot evolution, including nucleation, surface growth and coagulation, agglomeration, and oxidation, are first described with the generally accepted mathematical formulations in each stage explained. Different computational frameworks and their pros and cons are then reviewed, including the one-equation empirical soot model (macroscale), two-equation semi-empirical soot model (macroscale), different variations of population balance model (mesoscale), discrete element model (microscale), and molecular dynamics model (microscale). It is concluded that the accuracy required and the computational cost available are the two major influencing factors to be considered when selecting the appropriate computational model. The user needs to assess the priorities in their specific application and evaluate different modelling options to find the optimal balance between the level of accuracy and computation resources required.

References

 
Artelt, C., Schmid, H. J., Peukert, W. 2003. On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations. J Aerosol Sci, 34: 511534.
 
Aubagnac-Karkar, D., El Bakali, A., Desgroux, P. 2018a. Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method. Combust Flame, 189: 190206.
 
Aubagnac-Karkar, D., Michel, J. B., Colin, O., Darabiha, N. 2018b. Combustion and soot modelling of a high-pressure and high-temperature dodecane spray. Int J Engine Res, 19: 434448.
 
Bai, X. S., Balthasar, M., Mauss, F., Fuchs, L. 1998. Detailed soot modeling in turbulent jet diffusion flames. Symp Combust, 27: 16231630.
 
Ball, R. C., Jullien, R. 1984. Finite size effects in cluster–cluster aggregation. J Physique Lett, 45: 10311035.
 
Bolla, M., Farrace, D., Wright, Y. M., Boulouchos, K. 2014. Modelling of soot formation in a heavy-duty diesel engine with conditional moment closure. Fuel, 117: 309325.
 
Brasil, A. M., Farias, T. L., Carvalho, M. G. 1999. A recipe for image characterization of fractal-like aggregates. J Aerosol Sci, 30: 13791389.
 
Brenner, D. W. 1990. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B, 42: 94589471.
 
Brookes, S. J., Moss, J. B. 1999. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combust Flame, 116: 486503.
 
Burn, R. P., Mandelbrot, B. B. 1984. The Fractal Geometry of Nature. New York: W. H. Freeman and Company.
 
Chan, M. L., Moody, K. N., Mullins, J. R, Williams, A. 1987. Low-temperature oxidation of soot. Fuel, 66: 16941698.
 
Chan, Q. N., Medwell, P. R., Nathan, G. J. 2014. Algorithm for soot sheet quantification in a piloted turbulent jet non-premixed natural gas flame. Exp Fluids, 55: 1827.
 
Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang, W. 2018. Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. Int J Heat Mass Transf, 125: 310322.
 
Cheung, S. C. P., Deju, L., Yeoh, G. H., Tu, J. Y. 2013. Modeling of bubble size distribution in isothermal gas–liquid flows: Numerical assessment of population balance approaches. Nucl Eng Des, 265: 120136.
 
Cheung, S. C. P., Yeoh, G. H., Tu, J. Y. 2007. On the modelling of population balance in isothermal vertical bubbly flows—Average bubble number density approach. Chem Eng Process: Process Intensif, 46: 742756.
 
Chishty, M. A., Bolla, M., Hawkes, E. R., Pei, Y., Kook, S. 2018. Soot formation modelling for n-dodecane sprays using the transported PDF model. Combust Flame, 192: 101119.
 
Chittipotula, T., Janiga, G., Thévenin, D. 2011. Improved soot prediction models for turbulent non-premixed ethylene/air flames. Proc Combust Inst, 33: 559567.
 
Choi, M., Altman, I. S., Kim, Y. J., Pikhitsa, P. V., Lee, S., Park, G. S., Jeong, T., Yoo, J. B. 2004. Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene. Adv Mater, 16: 17211725.
 
Coelho, P. J. 2007. Numerical simulation of the interaction between turbulence and radiation in reactive flows. Prog Energy Combust Sci, 33: 311383.
 
Deju, L., Cheung, S. C. P., Yeoh, G. H., Tu, J. 2012. Study of isothermal vertical bubbly flow using direct quadrature method of moments. J Comput Multiph Flows, 4: 2339.
 
Deng, S., Mueller, M. E., Chan, Q. N., Qamar, N. H., Dally, B. B., Alwahabi, Z. T., Nathan, G. J. 2017. Hydrodynamic and chemical effects of hydrogen addition on soot evolution in turbulent nonpremixed bluff body ethylene flames. Proc Combust Inst, 36: 807814.
 
Etheridge, J., Mosbach, S., Kraft, M., Wu, H., Collings, N. 2011. Modelling soot formation in a DISI engine. Proc Combust Inst, 33: 31593167.
 
Fairweather, M., Jones, W. P., Lindstedt, R. P. 1992. Predictions of radiative transfer from a turbulent reacting jet in a cross-wind. Combust Flame, 89: 4563.
 
Fontanesi, S., del Pecchia, M., Pessina, V., Sparacino, S., di Iorio, S. 2021. Quantitative investigation on the impact of injection timing on soot formation in a GDI engine with a customized sectional method. Int J Engine Res, .
 
Fuchs, N. A. 1965. The mechanics of aerosols. By N. A. Fuchs. Translated by R. E. Daisley and Marina Fuchs; Edited by C. N. Davies. London (Pergamon Press), 1964. Pp. xiv, 408; 82 Figures; 40 Tables. £6. Q J R Meteorol Soc, 91: 249.
 
Goudeli, E., Eggersdorfer, M. L., Pratsinis, S. E. 2016. Coagulation of agglomerates consisting of polydisperse primary particles. Langmuir, 32: 92769285.
 
Guo, H., Liu, F., Smallwood, G. J., Gülder, Ö. L. 2002. The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene–air diffusion flame. Combust Theory Model, 6: 173187.
 
Harris, S. J., Maricq, M. M. 2002. The role of fragmentation in defining the signature size distribution of diesel soot. J Aerosol Sci, 33: 935942.
 
Haynes, B. S., Wagner, H. G. 1981. Soot formation. Prog Energy Combust Sci, 7: 229273.
 
Heinson, W. R., Sorensen, C. M., Chakrabarti, A. 2010. Does shape anisotropy control the fractal dimension in diffusion-limited cluster-cluster aggregation? Aerosol Sci Technol, 44: iiv.
 
Hou, D., Lindberg, C. S., Manuputty, M. Y., You, X., Kraft, M. 2019. Modelling soot formation in a benchmark ethylene stagnation flame with a new detailed population balance model. Combust Flame, 203: 5671.
 
Inci, G., Kronenburg, A., Weeber, R., Pflüger, D. 2017. Langevin dynamics simulation of transport and aggregation of soot nano-particles in turbulent flows. Flow Turbul Combust, 98: 10651085.
 
Kelesidis, G. A., Goudeli, E., Pratsinis, S. E. 2017a. Morphology and mobility diameter of carbonaceous aerosols during agglomeration and surface growth. Carbon, 121: 527535.
 
Kelesidis, G. A., Goudeli, E., Pratsinis, S. E. 2017b. Flame synthesis of functional nanostructured materials and devices: Surface growth and aggregation. Proc Combust Inst, 36: 2950.
 
Kent, J. H., Wagner, H. G. 1984. Why do diffusion flames emit smoke. Combust Sci Technol, 41: 245269.
 
Khan, I. M, Wang, C. H. T., Langridge, B. E. 1971. Coagulation and combustion of soot particles in diesel engines. Combust Flame, 17: 409419.
 
Kholghy, M., Saffaripour, M., Yip, C., Thomson, M. J. 2013. The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1. Combust Flame, 160: 21192130.
 
Köylü, Ü. Ö., McEnally, C. S., Rosner, D. E., Pfefferle, L. D. 1997. Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique. Combust Flame, 110: 494507.
 
Kruis, F. E., Kusters, K. A., Pratsinis, S. E., Scarlett, B. 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci Technol, 19: 514526.
 
Kubicki, J. D. 2000. Molecular mechanics and quantum mechanical modeling of hexane soot structure and interactions with pyrene. Geochem Trans, 1: 41.
 
Kwon, H., Etz, B. D., Montgomery, M. J., Messerly, R., Shabnam, S., Vyas, S., van Duin, A. C. T., McEnally, C. S., Pfefferle, L. D., Kim, S., Xuan, Y. 2020. Reactive molecular dynamics simulations and quantum chemistry calculations to investigate soot-relevant reaction pathways for hexylamine isomers. J Phys Chem A, 124: 42904304.
 
Kwon, H., Xuan, Y. 2021. Pyrolysis of bio-derived dioxolane fuels: A ReaxFF molecular dynamics study. Fuel, 306: 121616.
 
Lee, J., Yang, S. Y. 2013. A study of stability and vibration for particle sampling probes. Int J Mech Sci, 76: 152157.
 
Leung, K. M., Lindstedt, R. P., Jones, W. P. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combusti Flame, 87: 289305.
 
Li, D. D., Chan, Q. N., Timchenko, V., Yeoh, G. H. 2021. Controlling the clustering behavior of particulate colloidal systems using alternating and rotating magnetic fields. Comput Part Mech, .
 
Li, D. D., Gu, X., Timchenko, V., Chan, Q. N., Yuen, A. C. Y., Yeoh, G. H. 2018. Study of morphology and optical properties of gold nanoparticle aggregates under different pH conditions. Langmuir, 34: 1034010352.
 
Li, D. D., Yeoh, G. H., Timchenko, V., Lam, H. F. 2016. Numerical modelling of magnetic nanoparticle and carrier fluid interactions. In: Proceedings of the IEEE Nanotechnology Materials and Devices Conference, Toulouse, France.
 
Li, D. D., Yeoh, G. H., Timchenko, V., Lam, H. F. 2017. Numerical modeling of magnetic nanoparticle and carrier fluid interactions under static and double-shear flows. IEEE Trans Nanotechnol, 16: 798805.
 
Liu, F., Guo, H., Smallwood, G. J., Gülder, Ö. L. 2003. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combust Theory Model, 7: 301315.
 
Liu, F., Mo, X., Gan, H., Guo, T., Wang, X., Chen, B., Chen, J., Deng, S., Xu, N., Sekiguchi, T., Golberg, D., Bando, Y. 2014. Cheap, gram-scale fabrication of BN nanosheets via substitution reaction of graphite powders and their use for mechanical reinforcement of polymers. Sci Rep, 4: 4211.
 
Mao, Q., van Duin, A. C. T., Luo, K. H. 2017. Formation of incipient soot particles from polycyclic aromatic hydrocarbons: A ReaxFF molecular dynamics study. Carbon, 121: 380388.
 
Marchisio, D. L., Barresi, A. A. 2009. Investigation of soot formation in turbulent flames with a pseudo-bivariate population balance model. Chem Eng Sci, 64: 294303.
 
Marchisio, D. L., Fox, R. O. 2005. Solution of population balance equations using the direct quadrature method of moments. J Aerosol Sci, 36: 4373.
 
Marchisio, D. L., Pikturna, J. T., Fox, R. O., Vigil, R. D., Barresi, A. A. 2003. Quadrature method of moments for population-balance equations. AIChE J, 49: 12661276.
 
McEnally, C. S., Köylü, Ü. Ö., Pfefferle, L. D., Rosner, D. E. 1997. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples. Combust Flame, 109: 701720.
 
McEnally, C. S., Schaffer, A. M., Long, M. B., Pfefferle, L. D., Smooke, M. D., Colket, M. B., Hall, R. J. 1998. Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame. Symp Combust, 27: 14971505.
 
McGraw, R. 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Technol, 27: 255265.
 
Medwell, P. R., Nathan, G. J., Chan, Q. N., Alwahabi, Z. T., Dally, B. B. 2011. The influence on the soot distribution within a laminar flame of radiation at fluxes of relevance to concentrated solar radiation. Combust Flame, 158: 18141821.
 
Megaridis, C. M., Dobbins, R. A. 1989. Soot aerosol dynamics in a laminar ethylene diffusion flame. Symp Combust, 22: 353362.
 
Mehta, R. S. 2008. Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames. Ph.D. Thesis. The Pennsylvania State University
 
Moss, J. B., Aksit, I. M. 2007. Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel. Proc Combust Inst, 31: 31393146.
 
Moss, J. B., Stewart, C. D. 1998. Flamelet-based smoke properties for the field modelling of fires. Fire Saf J, 30: 229250.
 
Moss, J. B., Stewart, C. D., Syed, K. J. 1989. Flowfield modelling of soot formation at elevated pressure. Symp Combust, 22: 413423.
 
Moss, J. B., Stewart, C. D., Young, K. J. 1995. Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combust Flame, 101: 491500.
 
Mueller, M. E., Chan, Q. N., Qamar, N. H., Dally, B. B., Pitsch, H., Alwahabi, Z. T., Nathan, G. J. 2013. Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame. Combust Flame, 160: 12981309.
 
Ong, J. C., Pang, K. M., Walther, J. H., Ho, J. H., Ng, H. K. 2018. Evaluation of a Lagrangian Soot Tracking Method for the prediction of primary soot particle size under engine-like conditions. J Aerosol Sci, 115: 7095.
 
Qamar, N. H., Nathan, G. J., Alwahabi, Z. T., Chan, Q. N. 2011. Soot sheet dimensions in turbulent nonpremixed flames. Combust Flame, 158: 24582464.
 
Rigopoulos, S. 2019. Modelling of soot aerosol dynamics in turbulent flow. Flow, Turbul Combust, 103: 565604.
 
Saffaripour, M., Veshkini, A., Kholghy, M., Thomson, M. J. 2014. Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane. Combust Flame, 161: 848863.
 
Said, R., Garo, A., Borghi, R. 1997. Soot formation modeling for turbulent flames. Combust Flame, 108: 7186.
 
Salenbauch, S., Sirignano, M., Marchisio, D. L., Pollack, M., D’Anna, A., Hasse, C. 2017. Detailed particle nucleation modeling in a sooting ethylene flame using a Conditional Quadrature Method of Moments (CQMOM). Proc Combust Inst, 36: 771779.
 
Salenbauch, S., Sirignano, M., Pollack, M., D’Anna, A., Hasse, C. 2018. Detailed modeling of soot particle formation and comparison to optical diagnostics and size distribution measurements in premixed flames using a method of moments. Fuel, 222: 287293.
 
Schuetz, C. A., Frenklach, M. 2002. Nucleation of soot: Molecular dynamics simulations of pyrene dimerization. Proc Combust Inst, 29: 23072314.
 
Shaddix, C., Williams, T. 2007. Soot: Giver and taker of light. Am Sci, 95: 232239.
 
Singh, B. P., Kaviany, M. 1992. Modelling radiative heat transfer in packed beds. Int J Heat Mass Trans, 35: 13971405.
 
Sorensen, C. M. 2011. The mobility of fractal aggregates: A review. Aerosol Sci Technol, 45: 765779.
 
Syed, K. J., Stewart, C. D., Moss, J. B. 1991. Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames. Symp Combust, 23: 15331541.
 
Tersoff, J. 1988. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett, 61: 28792882.
 
Tree, D. R., Svensson, K. I. 2007. Soot processes in compression ignition engines. Prog Energy Combust Sci, 33: 272309.
 
Turns, S. R. 2000. An Introduction to Combustion: Concepts and Applications, 2nd edn. Boston, MA, USA: McGraw-Hill.
 
Van Duin, A. C. T., Dasgupta, S., Lorant, F., Goddard, W. A. 2001. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A, 105: 93969409.
 
Violi, A., Sarofim, A. F., Voth, G. A. 2004. Kinetic Monte Carlo-molecular dynamics approach to model soot inception. Combust Sci Technol, 176: 9911005.
 
Virtanen, A. K. K., Ristimäki, J. M., Vaaraslahti, K. M., Keskinen, J. 2004. Effect of engine load on diesel soot particles. Environ Sci Technol, 38: 25512556.
 
Vishwanathan, G., Reitz, R. D. 2010. Development of a practical soot modeling approach and its application to low-temperature diesel combustion. Combust Sci Technol, 182: 10501082.
 
Wang, C., Chan, Q. N., Kook, S., Hawkes, E. R., Lee, J., Medwell, P. R. 2016. External irradiation effect on the growth and evolution of in-flame soot species. Carbon, 102: 161171.
 
Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T. B. Y., Yang, W., Cheung, S. C. P., Yeoh, G. H. 2019. Sensitivity analysis of key parameters for population balance based soot model for low-speed diffusion flames. Energies, 12: 910.
 
Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T. B. Y., Yang, W., Cheung, S. C. P., Yeoh, G. H. 2020. Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame. J Energy Inst, 93: 112128.
 
Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc Combust Inst, 33: 4167.
 
Wang, Y., Raj, A., Chung, S. H. 2015. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combust Flame, 162: 586596.
 
Yang, J. C. 1993. Environmental Implications of Combustion Processes. Boca Raton, FA, USA: CRC Press.
 
Yapp, E. K. Y., Chen, D., Akroyd, J., Mosbach, S., Kraft, M., Camacho, J., Wang, H. 2015. Numerical simulation and parametric sensitivity study of particle size distributions in a burner-stabilised stagnation flame. Combust Flame, 162: 25692581.
 
Ye, Y., Luo, X., Dong, C., Xu, Y., Zhang, Z. 2020. Numerical and experimental investigation of soot suppression by acoustic oscillated combustion. ACS Omega, 5: 2386623875.
 
Yeoh, G. H., Tu, J. 2010. Computational Techniques for Multiphase Flows. UK: Butterworth-Heinemann.
 
Yeoh, G. H., Yuen, K. K. 2009. Computational Fluid Dynamics in Fire Engineering. UK: Butterworth-Heinemann.
 
Yeoh, G. H., Yuen, R. K. K., Chueng, S. C. P., Kwok, W. K. 2003. On modelling combustion, radiation and soot processes in compartment fires. Build Environ, 38: 771785.
 
Yuan, C., Fox, R. O. 2011. Conditional quadrature method of moments for kinetic equations. J Comput Phys, 230: 82168246.
 
Yuan, C., Laurent, F., Fox, R. O. 2012. An extended quadrature method of moments for population balance equations. J Aerosol Sci, 51: 123.
 
Yuen, A. C. Y., Yeoh, G. H., Alexander, B., Cook, M. 2014. Fire scene investigation of an arson fire incident using computational fluid dynamics based fire simulation. Build Simul, 7: 477487.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Chen, T. B. Y., Chan, Q. N., Wang, C., Li, D. D. 2017. Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int J Heat Mass Transf, 115: 717729.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Barber, T. J. 2016. Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Transf, 96: 171188.
 
Yuen, A., Chen, T., Yang, W., Wang, C., Li, A., Yeoh, G., Chan, Q., Chan, M. 2019. Natural ventilated smoke control simulation case study using different settings of smoke vents and curtains in a large atrium. Fire, 2: 7.
 
Zhao, F., Yang, W., Yu, W. 2020a. A progress review of practical soot modelling development in diesel engine combustion. J Traffic Transp Eng (English Edition), 7: 269281.
 
Zhao, F., Yang, W., Zhou, D., Yu, W., Li, J., Tay, K. L. 2017. Numerical modelling of soot formation and oxidation using phenomenological soot modelling approach in a dual-fueled compression ignition engine. Fuel, 188: 382389.
 
Zhao, F., Yu, W., Su, W. 2016. Sensitivity study of engine soot forming using detailed soot modelling oriented in soot surface growth dynamic. Fuel, 168: 8190.
 
Zhao, J., Lin, Y., Huang, K., Gu, M., Lu, K., Chen, P., Wang, Y., Zhu, B. 2020b. Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics. Fuel, 262: 116677.
 
Zucca, A., Marchisio, D. L., Barresi, A. A., Fox, R. O. 2006. Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames. Chem Eng Sci, 61: 8795.
 
Zucca, A., Marchisio, D. L., Vanni, M., Barresi, A. A. 2007. Validation of bivariate DQMOM for nanoparticle processes simulation. AIChE J, 53: 918931.
Experimental and Computational Multiphase Flow
Pages 1-14
Cite this article:
Li DD, Wang C, Chan QN, et al. Soot: A review of computational models at different length scales. Experimental and Computational Multiphase Flow, 2023, 5(1): 1-14. https://doi.org/10.1007/s42757-021-0124-4

623

Views

5

Crossref

6

Web of Science

6

Scopus

Altmetrics

Received: 15 April 2021
Revised: 20 August 2021
Accepted: 20 September 2021
Published: 27 January 2022
© Tsinghua University Press 2021
Return