AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Experimental analyses of temperature and pressure oscillation frequencies of a flat plate pulsating heat pipe tested under various edge orientation angles and heat loads

Vincent Ayel1( )Luca Pagliarini2Thibault Van't Veer1,3Maksym Slobodeniuk1Fabio Bozzoli2Cyril Romestant1Yves Bertin1
Pprime Institute CNRS-ENSMA-Université de Poitiers, UPR 3346, Futuroscope-Chasseneuil, 86961, France
Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A I-43124 Parma, Italy
Stellantis, Carrières sous Poissy, 78955, France
Show Author Information

Graphical Abstract

Abstract

A closed loop flat plate pulsating heat pipe, filled with OpteonTM SF33 (with a filling ratio of 50%), was experimentally studied in different orientations: 0° (horizontal), 22.5°, 45°, 67.5°, and 90° ( "edge" : vertical with horizontal channels). The results confirm the interest of such configurations, rarely investigated in the literature, on the thermal behavior of the device and on the regularity of the temperatures and pressure signals: If dried-out occurred in horizontal orientation, increase of inclination angle (starting from 22.5°) led to regular oscillatory movement due to help of gravity pressure drop between channels. The thermal performance remains very similar for the device inclination angles from 45° to 90°. Both FFT and wavelet analyses of the pressure signal and temperatures of the external wall of the device (measured with IR camera) were done to characterize the dominant oscillatory frequencies. These orientations led to dominant frequencies, rarely detected in the literature for other classic configurations (with vertical/inclined channels). Similar internal pressure and temperature signals both showed that the dominant frequency increases with decreasing angle (from edge to horizontal orientation), but also with increasing applied heat power, and finally tends to spread and disappear for the highest heat loads.

References

 
Ayel, V., Romestant, C., Bertin, Y., Manno, V., Filippeschi, S. 2014. Visualisation of flow patterns in flat plate pulsating heat pipe: Influence of hydraulic behaviour on thermal performances. Heat Pipe Science and Technology, 5: 377–384.
 
Ayel, V., Slobodeniuk, M., Bertossi, R., Romestant, C., Bertin, Y. 2021. Flat plate pulsating heat pipes: A review on the thermohydraulic principles, thermal performances and open issues. Applied Thermal Engineering, 197: 117200.
 
Borgmeyer, B., Ma, H. 2007. Experimental investigation of oscillating motions in a flat plate pulsating heat pipe. Journal of Thermophysics and Heat Transfer, 21: 405–409.
 
Chi, R.-G., Chung, W.-S., Rhi, S.-H. 2018. Thermal characteristics of an oscillating heat pipe cooling system for electric vehicle Li-ion batteries. Energies, 11: 1–16.
 
Drolen, B. L., Smoot, C. D. 2017. Performance limits of oscillating heat pipes: Theory and validation. Journal of Thermophysics and Heat Transfer, 31: 920–936.
 
Iwata, N., Bozzoli, F., Pagliarini, L., Cattani, L., Vocale, P., Malavasi, M., Rainieri, S. 2022. Characterization of thermal behavior of a micro pulsating heat pipe by local heat transfer investigation. International Journal of Heat and Mass Transfer, 196: 123203.
 
Khandekar, S., Gautam, A. P., Sharma, P. K. 2009. Multiple quasi-steady states in a closed loop pulsating heat pipe. International Journal of Thermal Sciences, 48: 535–546.
 
Khandekar, S., Panigrahi, P. K., Lefèvre, F., Bonjour, J. 2010. Local hydrodynamics of flow in a pulsating heat pipe: A review. Frontiers in Heat Pipes, 1: 023003.
 
Kim, J.-S., Bui, N. H., Kim, J.-W., Kim, J.-H., Jung, H. S. 2003. Flow visualization of oscillation characteristics of liquid and vapor flow in the oscillating capillary tube heat pipe. KSME International Journal, 17: 1507–1519.
 
Ma, H. 2015. Oscillating Heat Pipes. New York: Springer, 427.
 
Mameli, M., Marengo, M., Khandekar, S. 2014. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe. International Journal of Thermal Sciences, 75: 140–152.
 
Marengo, M., Nikolayev, V. S. 2018. Pulsating heat pipes: Experimental analysis, design and applications. In: Encyclopedia of Two-Phase Heat Transfer and Flow IV: Modeling Methodologies, Boiling of CO₂, and Micro-Two-Phase Cooling Volume 1: Modeling of Two-Phase Flows and Heat Transfer. Thome, J. R., Ed. World Scientific, 1–62.
 
Miyazaki, Y. 1999. Oscillatory flow in oscillating heat pipe. In: Proceedings of the 11th International Heat Pipe Conference, 367–372.
 
Monroe, J. G., Aspin, Z. S., Fairley, J. D., Thompson, S. M. 2017. Analysis and comparison of internal and external temperature measurements of a tubular oscillating heat pipe. Experimental Thermal and Fluid Science, 84: 165–178.
 
Pagliarini, L., Cattani, L., Ayel, V., Slobodeniuk, M., Romestant, C., Bozzoli, F. 2023a. Thermographic investigation on fluid oscillations and transverse interactions in a fully metallic flat-plate pulsating heat pipe. Applied Sciences, 13: 6351.
 
Pagliarini, L., Cattani, L., Bozzoli, F., Mameli, M., Filippeschi, S., Rainieri, S., Marengo, M. 2021. Thermal characterization of a multi-turn pulsating heat pipe in microgravity conditions: Statistical approach to the local wall-to-fluid heat flux. International Journal of Heat and Mass Transfer, 169: 120930.
 
Pagliarini, L., Cattani, L., Mameli, M., Filippeschi, S., Bozzoli, F. 2023b. Heat transfer delay method for the fluid velocity evaluation in a multi-turn pulsating heat pipe. International Journal of Thermofluids, 17: 100278.
 
Pagliarini, L., Cattani, L., Slobodeniuk, M., Ayel, V., Romestant, C., Bozzoli, F., Rainieri, S. 2022. Novel infrared approach for the evaluation of thermofluidic interactions in a metallic flat-plate pulsating heat pipe. Applied Sciences, 12: 11682.
 
Pagliarini, L., Iwata, N., Bozzoli, F. 2023c. Pulsating heat pipes: Critical review on different experimental techniques. Experimental Thermal and Fluid Science, 148: 110980.
 
Pagnoni, F., Ayel, V., Scoletta, E., Bertin, Y. 2018. Effects of the hydrostatic pressure gradient no thermohydraulic behavior of flat plate pulsating heat pipe: Experimental and numerical analyses. In: Proceedings of the 6th International Heat Transfer Conference, 8.
 
Perna, R., Abela, M., Mameli, M., Mariotti, A., Pietrasanta, L., Marengo, M., Filippeschi, S. 2020. Flow characterization of a pulsating heat pipe through the wavelet analysis of pressure signals. Applied Thermal Engineering, 171: 115128.
 
Takawale, A., Abraham, S., Sielaff, A., Mahapatra, P. S., Pattamatta, A., Stephan, P. 2019. A comparative study of flow regimes and thermal performance between flat plate pulsating heat pipe and capillary tube pulsating heat pipe. Applied Thermal Engineering, 149: 613–624.
 
Xu, J. L., Zhang, X. M. 2005. Start-up and steady thermal oscillation of a pulsating heat pipe. Heat and Mass Transfer, 41: 685–694.
 
Yasuda, Y., Nabeshima, F., Horiuchi, K., Nagai, H. 2022. Visualization of the working fluid in a flat-plate pulsating heat pipe by neutron radiography. International Journal of Heat and Mass Transfer, 185: 122336.
 
Zhang, Y., Faghri, A. 2008. Advances and unsolved issues in pulsating heat pipes. Heat Transfer Engineering, 29: 20–44.
 
Zhao, N., Ma, H., Pan, X. 2011. Wavelet analysis of oscillating motions in an oscillating heat pipe. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, 545–549.
Experimental and Computational Multiphase Flow
Pages 253-264
Cite this article:
Ayel V, Pagliarini L, Veer TV, et al. Experimental analyses of temperature and pressure oscillation frequencies of a flat plate pulsating heat pipe tested under various edge orientation angles and heat loads. Experimental and Computational Multiphase Flow, 2024, 6(3): 253-264. https://doi.org/10.1007/s42757-023-0178-6

250

Views

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 18 July 2023
Revised: 06 September 2023
Accepted: 21 October 2023
Published: 06 March 2024
© Tsinghua University Press 2024
Return