AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Numerical investigation of the impact of fuel temperature on spray characteristics in a pressure-swirl atomizer with spiral path

Kiumars Khani Aminjan1( )Mehdi Sedaghat2Milad Heidari3Morteza Khashehchi4Kazem Mohammadzadeh5Mohammad Salahinezhad6Rahim Bina7( )
Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756-41635, Rasht, Iran
Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran 19991-43344, Iran
Mechanical Engineering Department, Global College of Engineering and Technology (GCET), P.O. Box 2546 CPO Ruwi 112, Muscat, Sultanate of Oman
Systems Engineering Department, Military Technological College, Muscat, Sultanate of Oman
Department of Mechanical Engineering, Arak University of Technology, Arak 3818146763, Iran
Faculty of Mechanical Engineering. Islamic Azad University, Sari Branch, Sari 48164-194, Iran
Department of Mechanical Engineering, Shahid Chamran University, Ahvaz 6135783151, Iran
Show Author Information

Abstract

In this study, a pressure-swirl device with a spiral path was designed, built, and tested at various inlet pressures, and the experimental results were used to verify the accuracy of the numerical solution. Finally, we conducted a numerical investigation on the impact of fuel temperature on kerosene spray at four different temperatures: 243 K (approximately 10 degrees below the freezing point), 273 K (approximately equidistant between the freezing and flash point temperatures), 300 K (approximately 10 degrees below the flash point temperature), and 324 K (within the temperature range of the flash point). The simulation conditions, including a fixed mass flow rate of 10 gr/s, remained constant across all four cases, with the only variable being fuel temperature. The results indicate that as the fuel temperature increased, the spray angle increased by 45.27%. Furthermore, the most significant changes in the discharge coefficient were observed between temperatures of 273 and 324 K, leading to an increase of 18.01% in the discharge coefficient. Furthermore, within the liquid state range of the fuel, increasing the temperature resulted in a decrease in the Sauter mean diameter (SMD), while within the vapor state range, increasing the temperature led to an increase in the SMD. Additionally the pressure drop, discharge coefficient, and SMD of the spray are similar at temperatures of 243 and 324 K.

References

 
Abo-Serie, E., Arcoumanis, C., Gavaises, M. 2000. Spray characterisation of swirl pressure atomizers for G-DI engines: Phase Doppler measurements. In: Proceedings of the ILASS-Europe, 11–13.
 
Abo-Serie, E., Arcoumanis, C., Gavaises, M., Argueyrolles, B., Galzin, F. 1999. Structure of sprays generated by pressure swirl injectors for direct-injection gasoline engines. In: Proceedings of the 14th Annual Conference on Liquid Atomization and Spray Systems, 5–7.
 

Aminjan, K. K., Escobedo-Diaz, J. P., Heidari, M., Rahmanivahid, P., Khashehchi, M., Milani, S. M., Salahinezhad, M. 2023. Comment on “DPM-LES investigation on flow field dynamic and acoustic characteristics of a twin-fluid nozzle by multi-field coupling method”. International Journal of Heat and Mass Transfer, 217: 124678.

 

Aminjan, K. K., Ghodrat, M., Escobedo-diaz, J. P., Heidari, M., Chitt, M., Hajivand, M. 2022. Study on inlet pressure and Reynolds number in pressure-swirl atomizer with spiral path. International Communications in Heat and Mass Transfer, 137: 106231.

 
ANSYS, Inc. 2009. Overview and limitations of the VOF model. Available at https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node298.htm
 

Antonov, D. V., Fedorenko, R. M., Strizhak, P. A., Sazhin, S. S. 2023a. A simple model of heating and evaporation of droplets on a superhydrophobic surface. International Journal of Heat and Mass Transfer, 201: 123568.

 

Antonov, D. V., Shchepakina, E. A., Sobolev, V. A., Misyura, S. Y., Donskoy, I. G., Strizhak, P. A., Sazhin, S. S. 2023b. Dissociation of methane from a layer of methane-hydrate particles: A new simple model. International Journal of Heat and Mass Transfer, 213: 124225.

 

Antonov, D. V., Tonini, S., Cossali, G. E., Dolgikh, V. V., Strizhak, P. A., Sazhin, S. S. 2023c. Droplet heating and evaporation: A new approach to the modeling of the processes. Physics of Fluids, 35(7): 073311

 
Antonov, D., Strizhak, P., Sazhin, S. 2022. Cascade puffing and micro-explosion in composite droplets. In: Proceedings of the 3rd International Conference on Fluid Flow and Thermal Science, Paper No. 137.
 

Arcoumanis, C., Gavaises, M. 2000. Pressure-swirl atomizers for DISI engines: Further modeling and experiments. SAE Transactions, 109: 1225–1241.

 

Arcoumanis, C., Gavaises, M., Argueyrolles, B., Galzin, F. 1999. Modeling of pressure-swirl atomizers for GDI engines. SAE Transactions, 108: 516–532.

 

Babu, K. R., Narasimhan, M. V., Narayanaswamy, K. 1990. Correlations for prediction of discharge rate, core angle and air core diameter of swirl spray atomizers. International Journal of Turbo and Jet Engines, 7(3–4): 235–244.

 

Bal, M., Kayansalçik, G., Ertunç, Ö., Böke, Y. E. 2022. Benchmark study of 2D and 3D VOF simulations of a simplex nozzle using a hybrid RANS-LES approach. Fuel, 319: 123695.

 

Bar-Kohany, T., Antonov, D. V., Strizhak, P. A., Sazhin, S. S. 2023. Nucleation and bubble growth during puffing and micro-explosions in composite droplets. Fuel, 340: 126991.

 

Bayrel, L., Orzechowski, Z. 1993. Liquid Atomization, Combustion: An International Series. London: Taylor and Francis.

 

Cai, W., Li, W., Zhao, Y., Yan, Y. 2021. Experimental research on the influence of aviation fuel temperature on swirl nozzle velocity. Fuel, 289: 119765.

 

Castanet, G., Antonov, D. V., Strizhak, P. A., Sazhin, S. S. 2022. Effects of water subdroplet location on the start of puffing/micro- explosion in composite fuel-water droplets. International Journal of Heat and Mass Transfer, 186: 122466.

 
Chryssakis, C. A., Assanis, D. N., Lee, J. K., Nishida, K. 2003. Fuel spray simulation of high-pressure swirl-injector for DISI engines and comparison with laser diagnostic measurements. SAE Technical Paper, 2003-01-0007.
 

Czernek, K., Ochowiak, M., Włodarczak, S. 2020. Effect of rheological properties of aqueous solution of Na-CMC on spray angle for conical pressure-swirl atomizers. Energies, 13: 6309.

 

Doustdar, M. M., Alipour, H., Aliakbari, M. 2022. Estimating spray characteristics of the air-blast atomizer of a typical jet engine using definition of the new non-dimensional number K: Numerical and experimental study. Tehnički vjesnik, 29(1): 208–214.

 
Experimental Organic Chemistry. 2016. Flash point. Available at https://www.sciencedirect.com/topics/chemistry/flash-point
 

Fajgenbaum, R., Gonçalves dos Santos, R. 2016. Influence of fuel temperature on atomization parameters in a pressure-swirl atomizer from a port fuel injector by Shadowgraphy technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38: 1877–1892.

 

Fedorenko, R. M., Antonov, D. V., Strizhak, P. A., Sazhin, S. S. 2022. Time evolution of composite fuel/water droplet radii before the start of puffing/micro-explosion. International Journal of Heat and Mass Transfer, 191: 122838.

 

Fu, Q. F., Yang, L. J., Qu, Y. Y. 2011a. Measurement of annular liquid film thickness in an open-end swirl injector. Aerospace Science and Technology, 15: 117–124.

 

Fu, Q. F., Yang, L., Qu, Y. Y., Gu, B. 2011b. Geometrical effects on the fluid dynamics of an open-end swirl injector. Journal of Propulsion and Power, 27(5): 929–936.

 

Gad, H. M., Baraya, E. A., Farag, T. M., Ibrahim, I. A. 2022. Effect of geometric parameters on spray characteristics of air assisted pressure swirl atomizer. Alexandria Engineering Journal, 61: 5557–5571.

 
Galpin, J., Cousin, J., Corbinelli, G., Sivieri, S. 2005. A one dimensional model for designing pressure swirl atomizers. SAE Technical Paper, 2005-01-2101.
 

Gavaises, M. 1997. Modelling of diesel fuel injection processes. Imperial College London.

 

Gavaises, M., Abo-Serie, E., Arcoumanis, C. 2002. Nozzle hole film formation and its link to spray characteristics in swirl-pressure atomizers for direct injection gasoline engines. SAE Transactions, 111: 1942–1954.

 

Gavaises, M., Theodorakakos, A., Bergeles, G. 1996. Modeling wall impaction of diesel sprays. International Journal of Heat and Fluid Flow, 17(2): 130–138.

 

Geng, L., Wang, Y., Wang, J., Wei, Y., Lee, C. -F. F. 2020. Numerical simulation of the influence of fuel temperature and injection parameters on biodiesel spray characteristics. Energy Science & Engineering, 8: 312–326.

 

Giussani, F., Piscaglia, F., Sáez-Mischlich, G., Hèlie, J. 2020. A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization. Journal of Computational Physics, 406: 109068.

 

Grosshans, H., Movaghar, A., Cao, L., Oevermann, M., Szász, R. Z., Fuchs, L. 2016. Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters. Computers & Fluids, 136: 312–323.

 

Gurakov, N. I., Zubrilin, I. A., Abrashkin, V. Y., Morales, M. H., Yakushkin, D. V., Yastrebov, V. V., Kolomzarov, O. V., Idrisov, D. V. 2020. Validation of the VOF method for liquid spray process simulation from a pressure-swirl atomizer. AIP Conference Proceedings, 2304: 020031.

 

Inamura, T., Tamura, H., Sakamoto, H. 2003. Characteristics of liquid film and spray injected from swirl coaxial injector. Journal of Propulsion and Power, 19: 632–639.

 

Jazmi, R., Mohammadzadeh, K., Khaleghi, H., Maddahian, R. 2021. Numerical investigation of water droplet behavior in anode channel of a PEM fuel cell with partial blockage. Archive of Applied Mechanics, 91(4): 1391–1406.

 

Khani Aminjan, K., Ghodrat, M., Heidari, M., Arjmandfard, A., Rahmanivahid, P., Cosme Pecho, R. D., Yasin, T., Shukhratovich Abdullaev, S. 2023. Study on duplex air-blast atomizers spray in the engine real operation conditions. Physics of Fluids, 35(7): 073326.

 

Khani Aminjan, K., Heidari, M., Ganji, D. D., Aliakbari, M., Salehi, F., Ghodrat, M. 2021a. Study of pressure-swirl atomizer with spiral path at design point and outside of design point. Physics of Fluids, 33(9): 093305

 

Khani Aminjan, K., Heidari, M., Rahmanivahid, P. 2021b. Study of spiral path angle in pressure-swirl atomizer with spiral path. Archive of Applied Mechanics, 91: 33–46.

 

Khani Aminjan, K., Kundu, B., Ganji, D. D. 2020. Study of pressure swirl atomizer with tangential input at design point and outside of design point. Physics of Fluids, 32: 127113.

 

Kolovos, K., Koukouvinis, P., McDavid, R. M., Gavaises, M. 2021. Transient cavitation and friction-induced heating effects of diesel fuel during the needle valve early opening stages for discharge pressures up to 450 MPa. Energies, 14(10): 2923.

 

Kolovos, K., Kyriazis, N., Koukouvinis, P., Gavaises, M., Li, J. Z., McDavid, R. M. 2020. Large-eddy simulation of friction heating and turbulent cavitating flow in a Diesel injector including needle movement. Applications in Energy and Combustion Science, 7: 100037.

 

Koukouvinis, P., Vidal-Roncero, A., Rodriguez, C., Gavaises, M., Pickett, L. 2020. High pressure/high temperature multiphase simulations of dodecane injection to nitrogen: Application on ECN Spray-A. Fuel, 275: 117871.

 
Krause, E. 2005. Fluid mechanics I. In: Fluid Mechanics. Springer Berlin Heidelberg, 1–30.
 

Li, W., Cai, W., Duan, Z., Di, D., Yan, Y. 2020. Effect of fuel temperature on the atomization characteristics for swirl injector. Atomization and Sprays, 30(10): 697–711.

 

Li, X., Gao, Y., Yao, B., Cui, M., Qiu, S., Wang, S., Xu, M. 2023. Fuel modification flash boiling atomization and combustion in reciprocating engines. Journal of the Energy Institute, 111: 101268.

 

Li, X., Wang, S., Yang, S., Qiu, S., Sun, Z., Hung, D. L., Xu, M. 2024. A review on the recent advances of flash boiling atomization and combustion applications. Progress in Energy and Combustion Science, 100: 101119.

 

Liu, Z., Li, Z., Liu, J., Wu, J., Yu, Y., Ding, J. 2022. Numerical study on primary breakup of disturbed liquid jet sprays using a VOF model and LES method. Processes, 10(6): 1148.

 

Malgarinos, I., Nikolopoulos, N., Gavaises, M. 2017a. Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a Fluid Catalytic Cracking reactor, Part Ⅰ: Numerical model and 2D simulations. Fuel Processing Technology, 156: 317–330.

 

Malgarinos, I., Nikolopoulos, N., Gavaises, M. 2017b. Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a Fluid Catalytic Cracking reactor, part Ⅱ: 3D simulations. Fuel Processing Technology, 156: 43–53.

 

Maly, M. 2014. Quality of fuel atomization from small pressure-swirl atomizers. Faculty of Mechanical Engineering, Brno University of Technology.

 

Marcer, R., Le Cottier, P., Chaves, H., Argueyrolles, B., Habchi, C., Barbeau, B. 2000. A validated numerical simulation of diesel injector flow using a VOF method. SAE Transactions, 109: 2099–2118.

 

Mohammadzadeh, K., Khaleghi, H., Khadem Abolfazli, H. R., Seddiq, M. 2018. Effects of gas cross-over through the membrane on water management in the cathode and anode sides of PEM fuel cell. Journal of Applied Fluid Mechanics, 11(4): 861-875.

 

Moon, S., Abo-Serie, E., Bae, C. 2009. Air flow and pressure inside a pressure-swirl spray and their effects on spray development. Experimental Thermal and Fluid Science, 33: 222–231.

 

Moon, S., Bae, C., Abo-Serie, E., Choi, J. 2007. Internal and near-nozzle flow of a pressure-swirl atomizer under varied fuel temperature. Atomization and Sprays, 17(6): 529–550.

 

Park, B. S., Kim, H. Y., Yoon, S. S. 2007. Transitional instability of a pressure-swirl atomizer due to air-core eruption at low temperature. Atomization and Sprays, 17: 551–568.

 

Price, C., Hamzehloo, A., Aleiferis, P., Richardson, D. 2020. Numerical modelling of droplet breakup for flash-boiling fuel spray predictions. International Journal of Multiphase Flow, 125: 103183.

 

Qiu, S., Wang, S., Zhang, Y., Li, X., Hung, D., Xu, M. 2023. Dense-field spray droplet size quantification of flashing boiling atomization using structured laser illumination planar imaging technique. Fuel, 335: 127085.

 

Qiu, S., Yao, B., Wang, S., Zhang, W., Hung, D. L., Xu, M., Li, X. 2023. Droplet characteristics of multi-plume flash boiling spray evaluation using SLIPI-LIEF/Mie planar imaging technique. Energy, 282: 128876.

 

Ren, W. M., Nally, S., Cousin, J. 1999. Recent developments in simulations of internal flows in high pressure swirl injectors. Oil & Gas Science and Technology, 54(2): 227–231.

 

Rezaei, S., Vashahi, F., Dafsari, R. A., Ryu, G., Lee, J. 2021. A correlation of aviation fuel temperature effect on mean drop size in pressure swirl spray. Atomization and Sprays, 31(4): 81–97.

 
Rezaei, S., Vashahi, F., Ryu, G., Lee, J. 2019. On the correlation of the primary breakup length with fuel temperature in pressure swirl nozzle. Fuel, 258: 116094.
 

Rizk, N. K., Lefebvre, A. H. 1985. Internal flow characteristics of simplex swirl atomizers. Journal of Propulsion and Power, 1(3): 193–199.

 
Sazhin, S. S. 2022. Processes in composite droplets. In: Droplets and Sprays: Simple Models of Complex Processes. Mathematical Engineering. Springer Cham, 277–325.
 
Starinskaya, E. M., Miskiv, N. B., Nazarov, A. D., Terekhov, V. V., Terekhov, V. I., Rybdylova, O., Sazhin, S. 2022. Evaporation of suspended nanofluid (water/SiO2) droplets: Experimental results and modelling. Available at SSRN: https://ssrn.com/abstract=4187624 or http://dx.doi.org/10.2139/ssrn.4187624
 

Strotos, G., Aleksis, G., Gavaises, M., Nikas, K. S., Nikolopoulos, N., Theodorakakos, A. 2011. Non-dimensionalisation parameters for predicting the cooling effectiveness of droplets impinging on moderate temperature solid surfaces. International Journal of Thermal Sciences, 50: 698–711.

 

Strotos, G., Koukouvinis, P., Theodorakakos, A., Gavaises, M., Bergeles, G. 2015. Transient heating effects in high pressure Diesel injector nozzles. International Journal of Heat and Fluid Flow, 51: 257–267.

 

Sun, Z., Wang, H., Cui, M., Nour, M., Li, X., Xu, M. 2021. Investigation of flash boiling injection schemes in lean-burn gasoline direct injection engines. Applications in Energy and Combustion Science, 7: 100035.

 

Sun, Z., Xu, Q., Cui, M., Nour, M., Li, X., Hung, D. L., Xu, M. 2021. Impact of flash boiling multiple injections timing on the combustion and thermal efficiency of a gasoline direct injection engine under lean-burn. Fuel, 304: 121450.

 

Suyari, M., Lefebvre, A. H. 1986. Film thickness measurements in a simplex swirl atomizer. Journal of Propulsion and Power, 2: 528–533.

 

Theodorakakos, A., Strotos, G., Mitroglou, N., Atkin, C., Gavaises, M. 2014. Friction-induced heating in nozzle hole micro-channels under extreme fuel pressurisation. Fuel, 123: 143–150.

 

Tonini, S., Cossali, G. E., Shchepakina, E. A., Sobolev, V. A., Sazhin, S. S. 2022. A model of droplet evaporation: New mathematical developments. Physics of Fluids, 34(7): 073312.

 

Wang, S., Yang, S., Qiu, S., Li, X., Hung, D. L., Xu, M. 2022. Mechanism of flash boiling bubble breakup based on rim-like structure. Fuel, 329: 125345.

 

Wang, X. F., Lefebvre, A. H. 1988. Influence of fuel temperature on atomization performance of pressure-swirl atomizers. Journal of Propulsion and Power, 4: 222–227.

 

Wen, J., Hu, Y., Nishiie, T., Iino, J., Masri, A., Kurose, R. 2022. A flamelet LES of turbulent dense spray flame using a detailed high-resolution VOF simulation of liquid fuel atomization. Combustion and Flame, 237: 111742.

 

Xiao, D., Qiu, S., Zhang, X., Zhang, Y., Li, X., Hung, D., Xu, M. 2022. Dynamic behavior and mechanism analysis of tip wetting process under flash boiling conditions. Fuel, 307: 121773.

 

Yang, J. T., Huang, K. J., Chen, A. C. 2004. Microfabrication and laser diagnosis of pressure-swirl atomizers. Journal of Microelectromechanical Systems, 13(5): 843–850.

 

Yao, B., Lv, J., Xiao, D., Li, X., Jin, S. 2021. Tip-wetting film analysis using laser-induced fluorescence for multihole gasoline direct injectors under flash boiling conditions. Energy & Fuels, 36(1): 298–309.

 

Zhang, W., Cui, M., Yao, B., Nour, M., Li, X., Xu, M. 2023. Investigating the relationship between butanol molecular structure and combustion performance in an optical SIDI engine. Energy Conversion and Management: X, 20: 100455.

Experimental and Computational Multiphase Flow
Pages 428-445
Cite this article:
Aminjan KK, Sedaghat M, Heidari M, et al. Numerical investigation of the impact of fuel temperature on spray characteristics in a pressure-swirl atomizer with spiral path. Experimental and Computational Multiphase Flow, 2024, 6(4): 428-445. https://doi.org/10.1007/s42757-024-0198-x

105

Views

0

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 10 December 2023
Revised: 01 February 2024
Accepted: 12 March 2024
Published: 28 August 2024
© Tsinghua University Press 2024
Return