AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Can We Capitalize on Central Nervous System Plasticity in Young Athletes to Inoculate Against Injury?

Jed A. Diekfuss1 ( )Jennifer A. Hogg2Dustin R. Grooms3,4,5Alexis B. Slutsky-Ganesh6Harjiv Singh7Scott Bonnette1Manish Anand1Gary B. Wilkerson2Gregory D. Myer1,8,9
The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 10001, Cincinnati, OH 45229, USA
Department of Health and Human Performance, The University of Tennessee Chattanooga, Chattanooga, TN, USA
Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
Department of Kinesiology, The University of North Carolina Greensboro, Greensboro, NC, USA
Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
Show Author Information

Abstract

There are numerous physical, social, and psychological benefits of exercise, sport and play for youth athletes. However, dynamic activities come with a risk of injury that has yet to be abated, warranting novel therapeutics to promote injury-resistance and to keep an active lifestyle throughout the lifespan. The purpose of the present manuscript was to summarize the extant literature and potential connecting framework regarding youth brain development and neuroplasticity associated with musculoskeletal injury. This review provides the foundation for our proposed framework that utilizes the OPTIMAL (Optimizing Performance Through Intrinsic Motivation and Attention for Learning) theory of motor learning to elicit desirable biomechanical adaptations to support injury prevention (injury risk reduction), rehabilitation strategies, and exercise performance for youth physical activity and play across all facets of sport (Prevention Rehabilitation Exercise Play; PREP). We conclude that both young male and females are ripe for OPTIMAL PREP strategies that promote desirable movement mechanics by leveraging a unique time window for which their heightened state of central nervous system plasticity is capable of enhanced adaptation through novel therapeutic interventions.

References

1

Abdollahipour R, Valtr L, Wulf G. Optimizing bowling performance. J Mot Learn Dev. 2020;8(2): 233–44. https://doi.org/10.1123/jmld.2019-0017.

2

Abram SG, Price AJ, Judge A, Beard DJ. Anterior cruciate ligament (ACL) reconstruction and meniscal repair rates have both increased in the past 20 years in England: hospital statistics from 1997 to 2017. Br J Sports Med. 2020;54(5): 286–91. https://doi.org/10.1136/bjsports-2018-100195.

3

Ahldén M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J. The Swedish National Anterior Cruciate Ligament Register: a report on baseline variables and outcomes of surgery for almost 18,000 patients. Am J Sports Med. 2012;40(10): 2230–5. https://doi.org/10.1177/0363546512457348.

4

Anand M, Diekfuss JA, Bonnette S, Hurn M, Short I, Grooms DR, Myer GD. Validity assessment of a single camera MRI-compatible motion capture system for use with lower extremity neuroimaging paradigms. Int J Sports Phys Ther. 2020. (in press).

5

Ardoy DN, Fernandez-Rodriguez JM, Jimenez-Pavon D, Castillo R, Ruiz JR, Ortega FB. A physical education trial improves adolescents' cognitive performance and academic achievement: the EDUFIT study. Scand J Med Sci Sports. 2014;24(1): e52–61. https://doi.org/10.1111/sms.12093.

6
Balyi I, Hamilton A. Long-Term Athlete Development: Trainability in children and adolescents. Windows of opportunity. Optimal trainability. Victoria, BC: National Coaching Institute British Columbia & Advanced Training and Performance Ltd; 2004.
7

Baumeister J, Reinecke K, Schubert M, Weib M. Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res. 2011;29(9): 1383–9. https://doi.org/10.1002/jor.21380.

8

Baumeister J, Reinecke K, Weiss M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scand J Med Sci Sports. 2008;18(4): 473–84. https://doi.org/10.1111/j.1600-0838.2007.00702.x.

9

Baxter-Jones AD, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exerc Sci. 2005;17(1): 18–30.

10

Behm DG, Faigenbaum AD, Falk B, Klentrou P. Canadian Society for Exercise Physiology position paper: resistance training in children and adolescents. Appl Physiol Nutr Metab. 2008;33(3): 547–61. https://doi.org/10.1139/h08-020.

11

Bell DR, Oates DC, Clark MA, Padua DA. Two-and 3-dimensional knee valgus are reduced after an exercise intervention in young adults with demonstrable valgus during squatting. J Athl Train. 2013;48(4): 442–9. https://doi.org/10.4085/1062-6050-48.3.16.

12

Benjaminse A, Gokeler A, Dowling AV, Faigenbaum A, Ford KR, Hewett TE, Onate JA, Otten B, Myer GD. Optimization of the anterior cruciate ligament injury prevention paradigm: novel feedback techniques to enhance motor learning and reduce injury risk. J Orthop Sports Phys Ther. 2015;45(3): 170–82. https://doi.org/10.2519/jospt.2015.4986.

13

Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med. 1995;34(4): 537–41. https://doi.org/10.1002/mrm.1910340409.

14

Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6): 573–8.

16

Bonnette S, Anand M, Barber KD, DiCesare CA, Diekfuss JA, Grooms DR, Kiefer AW, Kitchen K, Reddington D, Riehm C, Riley MA, Schille A, Shafer J, Thomas S, Myer GD. The future of ACL prevention and rehabilitation: Integrating technology to optimize personalized medicine. Aspetar Sports Med J. 2020;9: 72–7.

15

Bonnette S, DiCesare CA, Diekfuss JA, Grooms DR, MacPherson RP, Riley MA, Myer GD. Advancing anterior cruciate ligament injury prevention using real-time biofeedback for amplified sensorimotor integration. J Athl Train. 2019;54(9): 985–6. https://doi.org/10.4085/1062-6050-54.083.

17

Bonnette S, DiCesare CA, Kiefer AW, Riley MA, Barber-Foss KD, Thomas S, Diekfuss JA, Myer GD. A technical report on the development of a real-time visual biofeedback system to optimize motor learning and movement deficit correction. J Sports Sci Med. 2020;19(1): 84–94.

18

Bonnette S, DiCesare CA, Kiefer AW, Riley MA, Barber Foss KD, Thomas S, Kitchen K, Diekfuss JA, Myer GD. Injury risk factors integrated into self-guided real-time biofeedback improves high-risk biomechanics. J Sport Rehab. 2019;28(8): 831–9. https://doi.org/10.1123/jsr.2017-0391.

19

Bonnette S, Diekfuss JA, Grooms DR, Kiefer AW, Riley MA, Riehm C, Moore C, Barber Foss KD, DiCesare CA, Baumeister J, Myer GD. Electrocortical dynamics differentiate athletes exhibiting low- and high-ACL injury risk biomechanics. Psychophysiology. 2020. https://doi.org/10.1111/psyp.13530.

20

Bray S, Krongold M, Cooper C, Lebel C. Synergistic effects of age on patterns of white and gray matter volume across childhood and adolescence. eNeuro. 2015;2(4): e0003–15. https://doi.org/10.1523/ENEURO.0003-15.2015.

21

Calvert GA, Hansen PC, Iversen SD, Brammer MJ. Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. Neuroimage. 2001;14(2): 427–38. https://doi.org/10.1006/nimg.2001.0812.

22

Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res. 2004;154(1): 1–10. https://doi.org/10.1007/s00221-003-1684-1.

23

Chua LK, Wulf G, Lewthwaite R. Onward and upward: optimizing motor performance. Hum Mov Sci. 2018;60: 107–14. https://doi.org/10.1016/j.humov.2018.05.006.

24

Costigan SA, Eather N, Plotnikoff RC, Hillman CH, Lubans DR. High-intensity interval training for cognitive and mental health in adolescents. Med Sci Sports Exerc. 2016;48(10): 1985–93. https://doi.org/10.1249/mss.0000000000000993.

25

Courtney C, Rine RM, Kroll P. Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture. 2005;22(1): 69–74. https://doi.org/10.1016/j.gaitpost.2004.07.002.

26

Criss CR, Onate JA, Grooms DR. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: a task-based functional connectivity analysis. Neurosci Lett. 2020;730: 134985. https://doi.org/10.1016/j.neulet.2020.134985.

27

Criss CR, Grooms DR, Diekfuss JA, Ellis JD, Thomas S, DiCesare CA, Bonnette S, Yuan W, Dudley JA, Schneider DK, Berz K, Myer GD. Simulated landing neural correlates of anterior cruciate ligament injury risk biomechanics. J Athl Train. 2019;54(9): 989–1003. https://doi.org/10.4085/1062-6050-54.081.

28

Culvenor AG, Barton CJ. ACL injuries: the secret probably lies in optimising rehabilitation. Br J Sports Med. 2018;52(22): 1416–8. https://doi.org/10.1136/bjsports-2017-098872.

29

Dai B, Mao M, Garrett WE, Yu B. Biomechanical characteristics of an anterior cruciate ligament injury in javelin throwing. J Sport Health Sci. 2015;4(4): 333–40. https://doi.org/10.1016/j.jshs.2015.07.004.

30

Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3): 443–54. https://doi.org/10.1016/j.neuron.2011.10.008.

31

de Graaf-Peters VB, Hadders-Algra M. Ontogeny of the human central nervous system: what is happening when? Early Hum Dev. 2006;82(4): 257–66. https://doi.org/10.1016/j.earlhumdev.2005.10.013.

32

DiCesare CA, Kiefer AW, Bonnette SH, Myer GD. High-risk lower-extremity biomechanics evaluated in simulated soccer-specific virtual environments. J Sport Rehabil. 2019;29(3): 294-300. https://doi.org/10.1123/jsr.2018-0237.

33
Diekfuss JA, Anand M, Grooms DR, Slutsky-Ganesh AB, Bonnette, S, Barber Foss KD, DiCesare CA, Hunnicutt JL, MyerGD. Novel brain mechanisms regulating anterior cruciate ligament injury risk biomechanics utilizing a motion analysis system integrated with functional magnetic resonance imaging during lower extremity movement. National Athletic Trainers' Association Clinical Symposia & Athletic Training Exposition. 2020, July 13–16 (Virtual due to COVID-19).
34

Diekfuss JA, Bonnette S, Hogg JA, Riehm C, Grooms DR, Singh H, Anand M, Slutsky AB, Wilkerson G, Myer GD. Practical training strategies to apply neuro-mechanistic motor learning principles to facilitate adaptations towards injury-resistant movement in youth. J Sci Sport Exerc. 2020. https://doi.org/10.1007/s42978-020-00083-0.

35

Diekfuss JA, Grooms DR, Bonnette S, DiCesare CA, Thomas S, MacPherson RP, Ellis JD, Kiefer AW, Riley MA, Schneider DK, Gadd B, Kitchen K, Barber Foss KD, Dudley JA, Yuan W, Myer GD. Real-time biofeedback integrated into neuromuscular training reduces high-risk knee biomechanics and increases functional brain connectivity: a preliminary longitudinal investigation. Psychophysiology. 2020. https://doi.org/10.1111/psyp.13545.

36

Diekfuss JA, Grooms DR, Hogg JA, Singh H, Slutsky AB, Bonnette S, Riehm C, Anand M, Nissen KS, Wilkerson G, Myer GD. Targeted application of motor learning theory to leverage youth neuroplasticity for enhanced injury-resistance and exercise performance: OPTIMAL PREP. J Sci Sport Exerc. 2020. https://doi.org/10.1007/s42978-020-00085-y.

37

Diekfuss JA, Grooms DR, Nissen KS, Schneider DK, Foss KDB, Thomas S, Bonnette S, Dudley JA, Yuan W, Reddington DL, Ellis JD, Leach J, Gordon M, Lindsey C, Rushford K, Shafer C, Myer GD. Alterations in knee sensorimotor brain functional connectivity contributes to ACL injury in male high-school football players: a prospective neuroimaging analysis. Braz J Phys Ther. 2020, 24(5): 415–23. https://doi.org/10.1016/j.bjpt.2019.07.004.

38

Diekfuss JA, Grooms DR, Yuan W, Dudley J, Barber Foss KD, Thomas S, Ellis JD, Schneider DK, Leach J, Bonnette S, Myer GD. Does brain functional connectivity contribute to musculoskeletal injury? A preliminary prospective analysis of a neural biomarker of ACL injury risk. J Sci Med Sport. 2019;22(2): 169–74. https://doi.org/10.1016/j.jsams.2018.07.004.

39

Diekfuss JA, Raisbeck LD. Focus of attention and instructional feedback from NCAA division 1 collegiate coaches. J Mot Learn Dev. 2016;4(2): 262–73. https://doi.org/10.1123/jmld.2015-0026.

40

Dragicevic-Cvjetkovic D, Jandric S, Bijeljac S, Palija S, Manojlovic S, Talic G. The effects of rehabilitation protocol on functional recovery after anterior cruciate ligament reconstruction. Med Arch. 2014;68(5): 350. https://doi.org/10.5455/medarh.2014.68.350-352.

41

Durham K, Van Vliet PM, Badger F, Sackley C. Use of information feedback and attentional focus of feedback in treating the person with a hemiplegic arm. Physiother Res Int. 2009;14(2): 77–90. https://doi.org/10.1002/pri.431.

42

Faigenbaum AD, Lloyd RS, Myer GD. Youth resistance training: past practices, new perspectives, and future directions. Pediatr Exerc Sci. 2013;25(4): 591–604. https://doi.org/10.1123/pes.25.4.591.

43

Faltus J, Criss CR, Grooms DR. Shifting focus: a clinician's guide to understanding neuroplasticity for anterior cruciate ligament rehabilitation. Curr Sports Med Rep. 2020;19(2): 76–83. https://doi.org/10.1249/jsr.0000000000000688.

44

Fayad LM, Parellada JA, Parker L, Schweitzer ME. MR imaging of anterior cruciate ligament tears: is there a gender gap? Skelet Radiol. 2003;32(11): 639–46. https://doi.org/10.1123/pes.25.4.591.

45

Ford P, De Ste Croix M, Lloyd R, Meyers R, Moosavi M, Oliver J, Till K, Williams C. The long-term athlete development model: physiological evidence and application. J Sports Sci. 2011;29(4): 389–402. https://doi.org/10.1080/02640414.2010.536849.

46

Frosch K, Habermann F, Fuchs M, Michel A, Junge R, Schmidtmann U, Stürmer K. Is prolonged ambulatory physical therapy after anterior cruciate ligament-plasty indicated? Comparison of costs and benefits. Der Unfallchirurg. 2001;104(6): 513–8. https://doi.org/10.1007/s001130170114.

47

Geuze RH. Postural control in children with developmental coordination disorder. Neural Plast. 2005;12(2–3): 183–96. https://doi.org/10.1155/NP.2005.183.

48

Giugliano DN, Solomon JL. ACL tears in female athletes. Phys Med Rehabil Clin N Am. 2007;18(3): 417–38. https://doi.org/10.1016/j.pmr.2007.05.002.

49

Goerger BM, Marshall SW, Beutler AI, Blackburn JT, Wilckens JH, Padua DA. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med. 2015;49(3): 188–95. https://doi.org/10.1136/bjsports-2013-092982.

50

Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101(21): 8174. https://doi.org/10.1073/pnas.0402680101.

51

Gokeler A, Benjaminse A, Hewett TE, Paterno MV, Ford KR, Otten E, Myer GDD. Feedback techniques to target functional deficits following anterior cruciate ligament reconstruction: implications for motor control and reduction of second injury risk. Sports Med. 2013;43(11): 1065–74. https://doi.org/10.1007/s40279-013-0095-0.

52

Gokeler A, Benjaminse A, Seil R, Kerkhoffs G, Verhagen E. Using principles of motor learning to enhance ACL injury prevention programs. Sports Orthop Traumatol. 2018;34(1): 23–30. https://doi.org/10.1007/s40279-019-01058-0.

53

Gokeler A, Benjaminse A, Welling W, Alferink M, Eppinga P, Otten B. The effects of attentional focus on jump performance and knee joint kinematics in patients after ACL reconstruction. Phys Ther Sport. 2015;16(2): 114–20. https://doi.org/10.1016/j.ptsp.2014.06.002.

54

Gokeler A, Neuhaus D, Benjaminse A, Grooms DR, Baumeister J. Principles of motor learning to support neuroplasticity after ACL injury: implications for optimizing performance and reducing risk of second ACL injury. Sports Med. 2019;49: 853–65. https://doi.org/10.1007/s40279-019-01058-0.

55

Gokeler A, Seil R, Kerkhoffs G, Verhagen E. A novel approach to enhance ACL injury prevention programs. J Exp Orthop. 2018;5(1): 22. https://doi.org/10.1186/s40634-018-0137-5.

56

Grindem H, Arundale AJ, Ardern CL. Alarming underutilisation of rehabilitation in athletes with anterior cruciate ligament reconstruction: four ways to change the game. Br J Sports Med. 2018;52(18): 1162–3. https://doi.org/10.1136/bjsports-2017-098746.

57

Grindstaff TL, Jackson KR, Garrison JC, Diduch DR, Ingersoll CD. Decreased quadriceps activation measured hours prior to a noncontact anterior cruciate ligament tear. J Orthop Sports Phys Ther. 2008;38(8): 502–7. https://doi.org/10.2519/jospt.2008.2761.

58

Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5): 381–93. https://doi.org/10.2519/jospt.2015.5549.

59

Grooms DR, Diekfuss JA, Ellis JD, Yuan W, Dudley JA, Barber Foss KD, Thomas S, Altaye M, Haas L, Williams B, Lanier JM, Bridgewater K, Myer GD. A novel approach to evaluate brain activation for lower extremity motor control. J Neuroimaging. 2019;29(5): 580–8. https://doi.org/10.1111/jon.12645.

60
Grooms DR, Diekfuss JA, Ellis JD, Thomas S, DiCesare CA, Bonnette S, Yuan W, Dudley JA, Schneider DK, Berz K, Riley MA, Criss CR, Myer GD. Sensorimotor neural correlates of anterior cruciate ligament injury risk biomechanics. 2019; Abstracts: ACL Research Retreat VIII, Greensboro, NC, March 14-16, 2019, national conference, podium presentation. https://doi.org/10.4085/1062-6050-54.081.
61

Grooms DR, Kiefer AW, Riley MA, Ellis JD, Thomas S, Kitchen K, DiCesare CA, Bonnette S, Gadd B, Barber Foss KD, Yuan W, Silva P, Galloway R, Diekfuss JA, Leach J, Berz K, Myer GD. Brain-behavior mechanisms for the transfer of neuromuscular training adaptions to simulated sport: initial findings from the train the brain project. J Sport Rehabil. 2018;27(5): 1–5. https://doi.org/10.1123/jsr.2017-0241.

62

Grooms DR, Page S, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10): 1005–10. https://doi.org/10.4085/1062-6050-50-10-02.

63

Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3): 180–9. https://doi.org/10.2519/jospt.2017.7003.

64

Halperin I, Chapman DW, Martin DT, Abbiss C, Wulf G. Coaching cues in amateur boxing: an analysis of ringside feedback provided between rounds of competition. Psychol Sport Exerc. 2016;25: 44–50. https://doi.org/10.1016/j.psychsport.2016.04.003.

65

Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition: implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016;44(9): 2347–53. https://doi.org/10.1177/0363546516657338.

66

Héroux ME, Tremblay F. Corticomotor excitability associated with unilateral knee dysfunction secondary to anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2006;14(9): 823–33. https://doi.org/10.1007/s00167-006-0063-4.

67

Herrington L, Ghulam H, Comfort P. Quadriceps strength and functional performance after anterior cruciate ligament reconstruction in professional soccer players at time of return to sport. J Strength Cond Res. 2018. https://doi.org/10.1519/JSC.0000000000002749.

68

Herrington L, Myer G, Horsley I. Task based rehabilitation protocol for elite athletes following anterior cruciate ligament reconstruction: a clinical commentary. Phys Ther Sport. 2013;14(4): 188–98. https://doi.org/10.1016/j.ptsp.2013.08.001.

69

Herting MM, Chu X. Exercise, cognition, and the adolescent brain. Birth Defects Res. 2017;109(20): 1672–9. https://doi.org/10.1002/bdr2.1178.

70

Herting MM, Gautam P, Spielberg JM, Dahl RE, Sowell ER. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation. PLoS One. 2015;10(3): e0119774–e01197740119774. https://doi.org/10.1371/journal.pone.0119774.

71

Hewett TE, Myer GDD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4): 492–501. https://doi.org/10.1177/0363546504269591.

72

Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6): 417–22. https://doi.org/10.1136/bjsm.2009.059162.

73

Huston LJ, Greenfield MLV, Wojtys EM. Anterior cruciate ligament injuries in the female athlete: potential risk factors. Clin Orthop Relat Res. 2000;372(372): 50–63. https://doi.org/10.1097/00003086-200003000-00007.

74

Huttenlocher PR. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res. 1979;163(2): 195–205. https://doi.org/10.1016/0006-8993(79)90349-4.

75

Ithurburn MP, Longfellow MA, Thomas S, Paterno MV, Schmitt LC. Knee function, strength, and resumption of preinjury sports participation in young athletes following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2019;49(3): 145–53. https://doi.org/10.2519/jospt.2019.8624.

76

Janssen K, Orchard J, Driscoll T, van Mechelen W. High incidence and costs for anterior cruciate ligament reconstructions performed in Australia from 2003–2004 to 2007–2008: time for an anterior cruciate ligament register by Scandinavian model? Scand J Med Sci Sports. 2012;22(4): 495–501. https://doi.org/10.1111/j.1600-0838.2010.01253.x.

77

Johnson L, Burridge JH, Demain SH. Internal and external focus of attention during gait re-education: an observational study of physical therapist practice in stroke rehabilitation. Phys Ther. 2013;93(7): 957–66. https://doi.org/10.2522/ptj.20120300.

78

Kal E, Prosée R, Winters M, van der Kamp J. Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review. PLoS One. 2018;13(9): e0203591. https://doi.org/10.1371/journal.pone.0203591.

79

Kantak SS, Winstein CJ. Learning–performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res. 2012;228(1): 219–31. https://doi.org/10.1016/j.bbr.2011.11.028.

80

Kapreli E, Athanasopoulos S, Gliatis J, Papathanasiou M, Peeters R, Strimpakos N, Van Hecke P, Gouliamos A, Sunaert S. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12): 2419–26. https://doi.org/10.1177/0363546509343201.

81

Konishi Y, Aihara Y, Sakai M, Ogawa G, Fukubayashi T. Gamma loop dysfunction in the quadriceps femoris of patients who underwent anterior cruciate ligament reconstruction remains bilaterally. Scand J Med Sci Sports. 2007;17(4): 393–9. https://doi.org/10.1111/j.1600-0838.2006.00573.x.

82

Kotsifaki A, Korakakis V, Whiteley R, Van Rossom S, Jonkers I. Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: a systematic review and meta-analysis. Br J Sports Med. 2020;54(3): 139–53. https://doi.org/10.1136/bjsports-2018-099918.

83

Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R. Mechanisms of anterior cruciate ligament injury in basketball. Am J Sports Med. 2007;35(3): 359–67. https://doi.org/10.1177/0363546506293899.

84

Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R. Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports. 2007;17(5): 508–19. https://doi.org/10.1111/j.1600-0838.2006.00558.x.

85

Lavender A, Laurence A, Bangash I, Smith R. Cortical evoked potentials in the ruptured anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1999;7(2): 98–101. https://doi.org/10.1007/s001670050129.

86

Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, Blumenthal JD, Lerch J, Zijdenbos AP, Evans AC, Thompson PM, Giedd JN. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage. 2007;36(4): 1065–73. https://doi.org/10.1016/j.neuroimage.2007.03.053.

87

Lepley A, Gribble P, Thomas A, Tevald M, Sohn D, Pietrosimone B. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6): 828–39. https://doi.org/10.1111/sms.12435.

88

Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee. 2014;21(3): 736–42. https://doi.org/10.1016/j.knee.2014.02.008.

89

Lepley AS, Grooms DR, Burland JP, Davi SM, Kinsella-Shaw JM, Lepley LK. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res. 2019;1–12: https://doi.org/10.1007/s00221-019-05499-x.

90

Lepley AS, Ly MT, Grooms DR, Kinsella-Shaw JM, Lepley LK. Corticospinal tract structure and excitability in patients with anterior cruciate ligament reconstruction: a DTI and TMS study. Neuroimage Clin. 2020;25: 102157. https://doi.org/10.1016/j.nicl.2019.102157.

91

Lloyd RS, Cronin JB, Faigenbaum AD, Haff GG, Howard R, Kraemer WJ, Micheli LJ, Myer GD, Oliver JL. National Strength and Conditioning Association position statement on long-term athletic development. J Strength Cond Res. 2016;30(6): 1491–509. https://doi.org/10.1519/JSC.0000000000001387.

92

Lloyd RS, Faigenbaum AD, Myer G, Stone M, Oliver J, Jeffreys I, Pierce K. UKSCA position statement: Youth resistance training. Prof Strength Cond. 2012;26: 26–39.

93

Lloyd RS, Meyers RW, Oliver JL. The natural development and trainability of plyometric ability during childhood. Strength Cond J. 2011;33(2): 23–32. https://doi.org/10.1519/SSC.0b013e3182093a27.

94

Lloyd RS, Oliver JL. The youth physical development model: a new approach to long-term athletic development. Strength Cond J. 2012;34(3): 61–72. https://doi.org/10.1519/SSC.0b013e31825760ea.

95

Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, Croix MBDS, Williams CA, Best TM, Alvar BA, Micheli LJ, Thomas DP. Long-term athletic development-part 1: a pathway for all youth. J Strength Cond Res. 2015;29(5): 1439–50. https://doi.org/10.1519/JSC.0000000000000756.

96

Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, Croix MBDS, Williams CA, Best TM, Alvar BA, Micheli LJ, Thomas DP. Long-term athletic development, part 2: barriers to success and potential solutions. J Strength Cond Res. 2015;29(5): 1451–64. https://doi.org/10.1519/01.JSC.0000465424.75389.56.

97

Lloyd RS, Oliver JL, Faigenbaum AD, Myer GD, Croix MBDS. Chronological age vs. biological maturation: implications for exercise programming in youth. J Strength Cond Res. 2014;28(5): 1454–64. https://doi.org/10.1519/JSC.0000000000000391.

98

Lloyd RS, Oliver JL, Meyers RW, Moody JA, Stone MH. Long-term athletic development and its application to youth weightlifting. Strength Cond J. 2012;34(4): 55–66. https://doi.org/10.1519/SSC.0b013e31825ab4bb.

99

Lloyd RS, Read P, Oliver JL, Meyers RW, Nimphius S, Jeffreys I. Considerations for the development of agility during childhood and adolescence. Strength Cond J. 2013;35(3): 2–11. https://doi.org/10.1519/SSC.0b013e31827ab08c.

100

Losciale JM, Bullock G, Cromwell C, Ledbetter L, Pietrosimone L, Sell TC. Hop testing lacks strong association with key outcome variables after primary anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med. 2020;48(2): 511–22. https://doi.org/10.1177/0363546519838794.

101

Luc-Harkey BA, Harkey MS, Pamukoff DN, Kim RH, Royal TK, Blackburn JT, Spang JT, Pietrosimone B. Greater intracortical inhibition associates with lower quadriceps voluntary activation in individuals with ACL reconstruction. Exp Brain Res. 2017;235(4): 1129–37. https://doi.org/10.1007/s00221-017-4877-8.

102

Makaruk H, Porter JM, Bodasińska A, Palmer S. Optimizing the penalty kick under external focus of attention and autonomy support instructions. Eur J Sport Sci. 2020;1–9. https://doi.org/10.1080/17461391.2020.1720829.

103

Makaruk H, Porter JM, Sadowski J, Bodasińska A, Zieliński J, Niźnikowski T, Mastalerz A. The effects of combining focus of attention and autonomy support on shot accuracy in the penalty kick. PLoS One. 2019;14(9): e0213487. https://doi.org/10.1371/journal.pone.0213487.

104
Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Champaign: Human Kinetics; 2004.
105

Malina RM, Cumming SP, Morano PJ, Barron M, Miller SJ. Maturity status of youth football players: a noninvasive estimate. Med Sci Sports Exerc. 2005;37(6): 1044–52.

106

Marchant DC, Carnegie E, Wood G, Ellison P. Influence of visual illusion and attentional focusing instruction in motor performance. Int J Sport Exerc Psychol. 2019;17(6): 659–69. https://doi.org/10.1080/1612197X.2018.1441165.

107

McCormack RG, Hutchinson MR. Time to be honest regarding outcomes of ACL reconstructions: should we be quoting 55–65% success rates for high-level athletes? Br J Sports Med. 2016;50(19): 1167–8. https://doi.org/10.1136/bjsports-2016-096324.

108

Miao X, Huang H, Hu X, Li D, Yu Y, Ao Y. The characteristics of EEG power spectra changes after ACL rupture. PLoS One 2017;12(2). https://doi.org/10.1371/journal.pone.0170455.

109

Monfort SM, Pradarelli JJ, Grooms DR, Hutchison KA, Onate JA, Chaudhari AM. Visual-spatial memory deficits are related to increased knee valgus angle during a sport-specific sidestep cut. Am J Sports Med. 2019;47(6): 1488–95. https://doi.org/10.1177/0363546519834544.

110

Myer GD, Faigenbaum AD, Chu DA, Falkel J, Ford KR, Best TM, Hewett TE. Integrative training for children and adolescents: techniques and practices for reducing sports-related injuries and enhancing athletic performance. Phys Sportsmed. 2011;39(1): 74–84. https://doi.org/10.3810/psm.2011.02.1854.

111

Myer GD, Ford KR, Brent JL, Hewett TE. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res. 2006;20(2): 345. https://doi.org/10.1519/R-17955.1.

112

Myer GD, Ford KR, Hewett TE. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J Athl Train. 2004;39(4): 352.

113

Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006;34(3): 445–55. https://doi.org/10.1177/0363546505281241.

114

Myer GD, Ford KR, Palumbo JP, Hewett TE. Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res. 2005;19(1): 51–60. https://doi.org/10.1519/13643.1.

115

Myer GD, Lloyd RS, Brent JL, Faigenbaum AD. How young is "too young" to start training? ACSM's Health Fit J. 2013;17(5): 14. https://doi.org/10.1249/FIT.0b013e3182a06c59.

116

Myer GD, Paterno MV, Ford KR, Hewett TE. Neuromuscular training techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. J Strength Cond Res. 2008;22(3): 987–1014. https://doi.org/10.1519/JSC.0b013e31816a86cd.

117

Myer GD, Paterno MV, Ford KR, Quatman CE, Hewett TE. Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther. 2006;36(6): 385–402. https://doi.org/10.2519/jospt.2006.2222.

118

Myer GD, Sugimoto D, Thomas S, Hewett TE. The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a meta-analysis. Am J Sports Med. 2013;41(1): 203–15. https://doi.org/10.1177/0363546512460637.

119

Myer GDD, Schmitt LC, Brent JL, Ford KR, Barber Foss KD, Scherer BJ, Heidt RS Jr, Divine JG, Hewett TE. Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther. 2011;41(6): 377–87. https://doi.org/10.2519/jospt.2011.3547.

120

Nagai T, Schilaty ND, Laskowski ER, Hewett TE. Hop tests can result in higher limb symmetry index values than isokinetic strength and leg press tests in patients following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2020;28(3): 816–22. https://doi.org/10.1007/s00167-019-05513-3.

121

Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7): 1271–88. https://doi.org/10.1007/s40279-016-0666-y.

122

Neto T, Sayer T, Theisen D, Mierau A. Functional brain plasticity associated with ACL injury: a scoping review of current evidence. Neural Plast. 2019;2019. https://doi.org/10.1155/2019/3480512.

123

Norte GE, Hertel J, Saliba SA, Diduch DR, Hart JM. Quadriceps neuromuscular function in patients with anterior cruciate ligament reconstruction with or without knee osteoarthritis: a cross-sectional study. J Athl Train. 2018;53(5): 475–85. https://doi.org/10.4085/1062-6050-102-17.

124

Ochi M, Iwasa J, Uchio Y, Adachi N, Kawasaki K. Induction of somatosensory evoked potentials by mechanical stimulation in reconstructed anterior cruciate ligaments. J Bone Jt Surg Br. 2002;84(5): 761–6. https://doi.org/10.1302/0301-620x.84b5.12584.

125

Ochi M, Iwasa J, Uchio Y, Adachi N, Sumen Y. The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Jt Surg Br. 1999;81(5): 902–6. https://doi.org/10.1302/0301-620x.81b5.9202.

126

Øiestad BE, Holm I, Engebretsen L, Risberg MA. The association between radiographic knee osteoarthritis and knee symptoms, function and quality of life 10–15 years after anterior cruciate ligament reconstruction. Br J Sports Med. 2011;45(7): 583–8. https://doi.org/10.1136/bjsm.2010.073130.

127

Oliver JL, Lloyd RS. Long-term athlete development and trainability during childhood: a brief review. Prof Strength Cond J. 2012;26: 19–24.

128

Pascua LA, Wulf G, Lewthwaite R. Additive benefits of external focus and enhanced performance expectancy for motor learning. J Sports Sci. 2015;33(1): 58–66. https://doi.org/10.1080/02640414.2014.922693.

129

Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10): 1968–78. https://doi.org/10.1177/0363546510376053.

130

Petanjek Z, Judaš M, Šimić G, Rašin MR, Uylings HB, Rakic P, Kostović I. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci. 2011;108(32): 13281–6. https://doi.org/10.1073/pnas.1105108108.

131

Peters BD, Szeszko PR, Radua J, Ikuta T, Gruner P, DeRosse P, Zhang J-P, Giorgio A, Qiu D, Tapert SF. White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophr Bull. 2012;38(6): 1308–17. https://doi.org/10.1093/schbul/sbs054.

132

Petushek EJ, Sugimoto D, Stoolmiller M, Smith G, Myer GD. Evidence-based best-practice guidelines for preventing anterior cruciate ligament injuries in young female athletes: a systematic review and meta-analysis. Am J Sports Med. 2019;47(7): 1744–53. https://doi.org/10.1177/0363546518782460.

133

Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6): 665–74. https://doi.org/10.4085/1062-6050-50.1.11.

134

Porter J, Wu W, Partridge J. Focus of attention and verbal instructions: strategies of elite track and field coaches and athletes. Sport Sci Rev. 2010;19(3–4): 77–89. https://doi.org/10.2478/v10237-011-0018-7.

135

Poulsen E, Goncalves GH, Bricca A, Roos EM, Thorlund JB, Juhl CB. Knee osteoarthritis risk is increased 4–6 fold after knee injury—a systematic review and meta-analysis. Br J Sports Med. 2019;53(23): 1454–63. https://doi.org/10.1136/bjsports-2018-100022.

136

Powers CM, Fisher B. Mechanisms underlying ACL injury-prevention training: the brain-behavior relationship. J Athl Train. 2010;45(5): 513–5. https://doi.org/10.4085/1062-6050-45.5.513.

137

Prince JS, Laor T, Bean JA. MRI of anterior cruciate ligament injuries and associated findings in the pediatric knee: changes with skeletal maturation. Am J Roentgenol. 2005;185(3): 756–62. https://doi.org/10.2214/ajr.185.3.01850756.

138

Raisbeck L, Yamada M, Diekfuss JA. Focus of attention in trained distance runners. Int J Sports Sci Coach. 2018;13(6): 1143–9. https://doi.org/10.1177/1747954118798396.

139

Raisbeck LD, Diekfuss JA, Wyatt W, Shea JB. Motor imagery, physical practice, and memory: the effects on performance and workload. Percept Mot Skills. 2015;121(3): 691–705. https://doi.org/10.2466/23.25.PMS.121c23x6.

140

Raisbeck LD, Wyatt WR, Shea JB. A two process memory-based account for mental and physical practice differences. J Mot Behav. 2012;44(2): 115–24. https://doi.org/10.1080/00222895.2012.654525.

141

Rossini PM, Barker A, Berardelli A, Caramia M, Caruso G, Cracco R, Dimitrijević M, Hallett M, Katayama Y, Lücking C. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2): 79–92. https://doi.org/10.1016/0013-4694(94)90029-9.

142

Schmitz RJ, Kulas AS, Perrin DH, Riemann BL, Shultz SJ. Sex differences in lower extremity biomechanics during single leg landings. Clin Biomech (Bristoal, Avon). 2007;22(6): 681–8. https://doi.org/10.1016/j.clinbiomech.2007.03.001.

143

Shah VM, Andrews JR, Fleisig GS, McMichael CS, Lemak LJ. Return to play after anterior cruciate ligament reconstruction in National Football League athletes. Am J Sports Med. 2010;38(11): 2233–9. https://doi.org/10.1177/0363546510372798.

144

Sibley BA, Etnier JL. The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci. 2003;15(3): 243–56. https://doi.org/10.1123/PES.15.3.243.

145

Silfies SP, Vendemia JM, Beattie PF, Stewart JC, Jordon M. Changes in brain structure and activation may augment abnormal movement patterns: an emerging challenge in musculoskeletal rehabilitation. Pain Med. 2017;18(11): 2051–4. https://doi.org/10.1093/pm/pnx190.

146

Silva F, Ribeiro F, Oliveira J. Effect of an accelerated ACL rehabilitation protocol on knee proprioception and muscle strength after anterior cruciate ligament reconstruction. Arch Exerc Health Dis. 2012;3: 139–44. https://doi.org/10.5628/aehd.v3i1-2.113.

147

Soderstrom NC, Bjork RA. Learning versus performance: an integrative review. Perspect Psychol Sci. 2015;10(2): 176–99. https://doi.org/10.1177/1745691615569000.

148

Spear LP. Adolescent neurodevelopment. J Adolesc Health. 2013;52(2): S7–13. https://doi.org/10.1016/j.jadohealth.2012.05.006.

149

Subramanian SK, Sharma VK, Arunachalam V, Radhakrishnan K, Ramamurthy S. Effect of structured and unstructured physical activity training on cognitive functions in adolescents—a randomized control trial. J Clin Diagn Res. 2015;9(11): Cc04–Cc09. https://doi.org/10.7860/jcdr/2015/14881.6818.

150

Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6): 943–8. https://doi.org/10.1177/0363546507299532.

151

Treacy S, Barron O, Brunet M, Barrack R. Assessing the need for extensive supervised rehabilitation following arthroscopic ACL reconstruction. Am J Orthop (Belle Mead, NJ). 1997;26(1): 25–9.

152

Tsai L-C, Powers CM. Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(2): 423–9. https://doi.org/10.1177/0363546512471184.

153

Valeriani M, Restuccia D, Lazzaro VD, Franceschi F, Fabbriciani C, Tonali P. Central nervous system modifications in patients with lesion of the anterior cruciate ligament of the knee. Brain. 1996;119(5): 1751–62. https://doi.org/10.1093/brain/119.5.1751.

154

van der Graaff E, Hoozemans M, Pasteuning M, Veeger D, Beek PJ. Focus of attention instructions during baseball pitching training. Int J Sports Sci Coach. 2018;13(3): 391–7. https://doi.org/10.1177/1747954117711095.

155

van Duijvenvoorde ACK, Achterberg M, Braams BR, Peters S, Crone EA. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses. Neuroimage. 2016;124(Pt A): 409–20. https://doi.org/10.1016/j.neuroimage.2015.04.069.

156

Walden M, Hagglund M, Magnusson H, Ekstrand J. ACL injuries in men's professional football: a 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br J Sports Med. 2016;50(12): 744–50. https://doi.org/10.1136/bjsports-2015-095952.

157

Welling W, Benjaminse A, Lemmink K, Gokeler A. Passing return to sports tests after ACL reconstruction is associated with greater likelihood for return to sport but fail to identify second injury risk. Knee. 2020;27(3): 949–57. https://doi.org/10.1016/j.knee.2020.03.007.

158

Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7): 1861–76. https://doi.org/10.1177/0363546515621554.

159

Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 2013;6(1): 77–104. https://doi.org/10.1080/1750984X.2012.723728.

160

Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev. 2016;23: 1382–414. https://doi.org/10.3758/s13423-015-0999-9.

161

Wulf G, Lewthwaite R, Cardozo P, Chiviacowsky S. Triple play: additive contributions of enhanced expectancies, autonomy support, and external attentional focus to motor learning. Q J Exp Psychol. 2018;71(4): 824–31. https://doi.org/10.1080/17470218.2016.1276204.

162

Yamada M, Diekfuss JA, Raisbeck L. Motor behavior literature fails to translate: a preliminary investigation into coaching and focus of attention in recreational distance runners. Int J Exerc Sci. 2020;13(5): 789–801.

163

Zarzycki R, Morton SM, Charalambous CC, Marmon A, Snyder-Mackler L. Corticospinal and intracortical excitability differ between athletes early after ACLR and matched controls. J Orthop Res. 2018;36(11): 2941–8. https://doi.org/10.1002/jor.24062.

164

Zbrojkiewicz D, Vertullo C, Grayson JE. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med J Aust. 2018;208(8): 354–8.

165

Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126(3): e678–686686. https://doi.org/10.1542/peds.2010-0059.

Journal of Science in Sport and Exercise
Pages 305-318
Cite this article:
Diekfuss JA, Hogg JA, Grooms DR, et al. Can We Capitalize on Central Nervous System Plasticity in Young Athletes to Inoculate Against Injury?. Journal of Science in Sport and Exercise, 2020, 2(4): 305-318. https://doi.org/10.1007/s42978-020-00080-3

403

Views

10

Crossref

12

Scopus

0

CSCD

Altmetrics

Received: 20 May 2020
Accepted: 31 August 2020
Published: 02 November 2020
© Beijing Sport University 2020
Return