AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Practical Training Strategies to Apply Neuro-Mechanistic Motor Learning Principles to Facilitate Adaptations Towards Injury-Resistant Movement in Youth

Jed A. Diekfuss1 ( )Scott Bonnette1Jennifer A. Hogg2Christopher Riehm1Dustin R. Grooms3,4,5Harjiv Singh6Manish Anand1Alexis B. Slutsky-Ganesh7Gary B. Wilkerson2Gregory D. Myer1,8,9
The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 10001, Cincinnati, OH 45229, USA
Department of Health and Human Performance, The University of Tennessee Chattanooga, Chattanooga, TN, USA
Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC, USA
Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
Show Author Information

Abstract

Youth may be particularly responsive to motor learning training strategies that support injury-resistant movement mechanics in youth for prevention programs that reduce injury risk, injury rehabilitation, exercise performance, and play more generally (Optimizing Performance Through Intrinsic Motivation and Attention for Learning Prevention Rehabilitation Exercise Play; OPTIMAL PREP) One purpose of the present manuscript was to provide clinical applications and tangible examples of how to implement the proposed techniques derived from OPTIMAL theory into PREP strategies for youth. A secondary purpose was to review recent advances in technology that support the clinical application of OPTIMAL PREP strategies without extensive resources/programming knowledge to promote evidence-driven tools that will support practitioner feedback delivery. The majority of examples provided are within the context of anterior cruciate ligament (ACL) injury rehabilitation, but we emphasize the potential for OPTIMAL PREP strategies to be applied to a range of populations and training scenarios that will promote injury resistance and keep youth active and healthy.

References

1

Abdollahipour R, Psotta R, Land WM. The influence of attentional focus instructions and vision on jump height performance. Res Q Exerc Sport. 2016;87(4):408–13. https://doi.org/10.1080/02701367.2016.1224295.

2

Adams K, Kiefer A, Panchuk D, Hunter A, MacPherson R, Spratford W. From the field of play to the laboratory: Recreating the demands of competition with augmented reality simulated sport. J Sports Sci. 2020;38(5):486–93. https://doi.org/10.1080/02640414.2019.1706872.

3

Andersen MB, Williams JM. A model of stress and athletic injury: Prediction and prevention. J Sport Exerc Psychol. 1988;10(3):294–306. https://doi.org/10.1123/jsep.10.3.294.

4

Anderson DI, Magill RA, Sekiya H. Motor learning as a function of KR schedule and characteristics of task-intrinsic feedback. J Mot Behav. 2001;33(1):59–66. https://doi.org/10.1080/00222890109601903.

5

Armitano-Lago CN, Morrison S, Hoch JM, Bennett HJ, Russell DM. Anterior cruciate ligament reconstructed individuals demonstrate slower reactions during a dynamic postural task. Scand J Med Sci Sports. 2020;30(8):1518–28. https://doi.org/10.1111/sms.13698.

6

Armitano CN, Haegele JA, Russell DM. The use of augmented information for reducing anterior cruciate ligament injury risk during jump landings: a systematic review. J Athl Train. 2018;53(9):844–59. https://doi.org/10.4085/1062-6050-320-17.

7

Bahmani M, Diekfuss JA, Rostami R, Ataee N, Ghadiri F. Visual illusions affect motor performance, but not learning in highly skilled-shooters. J Motor Learn Dev. 2018;6(2):220–33. https://doi.org/10.1123/jmld.2017-0011.

8

Bahmani M, Wulf G, Ghadiri F, Karimi S, Lewthwaite R. Enhancing performance expectancies through visual illusions facilitates motor learning in children. Hum Mov Sci. 2017;55:1–7. https://doi.org/10.1016/j.humov.2017.07.001.

9

Behm DG, Faigenbaum AD, Falk B, Klentrou P. Canadian Society for Exercise Physiology position paper: resistance training in children and adolescents. Appl Physiol Nutr Metab. 2008;33(3):547–61. https://doi.org/10.1139/h08-020.

10

Benjaminse A, Otten B, Gokeler A, Diercks RL, Lemmink KA. Motor learning strategies in basketball players and its implications for ACL injury prevention: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2365–76. https://doi.org/10.1007/s00167-015-3727-0.

11

Benjaminse A, Welling W, Otten B, Gokeler A. Transfer of improved movement technique after receiving verbal external focus and video instruction. Knee Surg Sports Traumatol Arthrosc. 2018;26(3):955–62. https://doi.org/10.1007/s00167-017-4671-y.

12

Bles W, Bos JE, De Graaf B, Groen E, Wertheim AH. Motion sickness: only one provocative conflict? Brain Res Bull. 1998;47(5):481–7. https://doi.org/10.1016/s0361-9230(98)00115-4.

13

Bonnette S, DiCesare CA, Diekfuss JA, Grooms DR, MacPherson RP, Riley MA, Myer GD. Advancing anterior cruciate ligament injury prevention using real-time biofeedback for amplified sensorimotor integration. J Athl Train. 2019;54(9):985–6. https://doi.org/10.4085/1062-6050-54.083.

14

Bonnette S, DiCesare CA, Kiefer AW, Riley MA, Barber-Foss KD, Thomas S, Diekfuss JA, Myer GD. A technical report on the development of a real-time visual biofeedback system to optimize motor learning and movement deficit correction. J Sports Sci Med. 2020;19(1):84–94.

15

Bonnette S, DiCesare CA, Kiefer AW, Riley MA, Barber Foss KD, Thomas S, Kitchen K, Diekfuss JA, Myer GD. Injury risk factors integrated into self-guided real-time biofeedback improves high-risk biomechanics. J Sport Rehab. 2019;. https://doi.org/10.1123/jsr.2017-0391.

16

Bos JE, Bles W, Groen EL. A theory on visually induced motion sickness. Displays. 2008;29(2):47–57. https://doi.org/10.1016/j.displa.2007.09.002.

17

Burland JP, Lepley AS, Frechette L, Lepley LK. Protracted alterations in muscle activation strategies and knee mechanics in patients after Anterior Cruciate Ligament Reconstruction. Knee Surg Sports Traumatol Arthrosc. 2020. https://doi.org/10.1007/s00167-019-05833-4.

18

Caserman P, Garcia-Agundez A, Konrad R, Göbel S, Steinmetz R. Real-time body tracking in virtual reality using a Vive tracker. Virtual Real. 2019;23(2):155–68. https://doi.org/10.1007/s10055-018-0374-z.

19

Chauvel G, Wulf G, Maquestiaux F. Visual illusions can facilitate sport skill learning. Psychon Bull Rev. 2015;22(3):717–21. https://doi.org/10.3758/s13423-014-0744-9.

20

Chiviacowsky S, Wulf G, Lewthwaite R. Self-controlled learning: the importance of protecting perceptions of competence. Front Psychol. 2012;3:458. https://doi.org/10.3389/fpsyg.2012.00458.

21

Dhawale AK, Smith MA, Ölveczky BP. The role of variability in motor learning. Annu Rev Neurosci. 2017;40:479–98. https://doi.org/10.1146/annurev-neuro-072116-031548.

22

DiCesare CA, Kiefer AW, Bonnette SH, Myer GD. Realistic soccer-specific virtual environment exposes high-risk lower extremity biomechanics. J Sport Rehabil. 2020,29(3):294–300. https://doi.org/10.1123/jsr.2018-0237.

23

Diekfuss JA, Grooms DR, Bonnette S, DiCesare CA, Thomas S, MacPherson RP, Ellis JD, Kiefer AW, Riley MA, Schneider DK, Gadd B, Kitchen K, Barber Foss KD, Dudley JA, Yuan W, Myer GD. Real-time biofeedback integrated into neuromuscular training reduces high-risk knee biomechanics and increases functional brain connectivity: a preliminary longitudinal investigation. Psychophysiology. 2020. https://doi.org/10.1111/psyp.13545.

24

Diekfuss JA, Grooms DR, Hogg JA, Singh H, Slutsky AB, Bonnette S, Riehm C, Anand M, Nissen KS, Wilkerson GB, Myer GD. Targeted application of motor learning theory to leverage youth neuroplasticity for enhanced injury-resistance and exercise performance: OPTIMAL PREP. J Sci Sport Exerc. 2020;. https://doi.org/10.1007/s42978-020-00085-y.

25

Diekfuss JA, Hogg JA, Grooms DR, Slutsky AB, Singh H, Bonnette S, Anand M, Wilkerson GB, Myer GD. Can we capitalize on central nervous system plasticity in young athletes to inoculate against injury? J Sci Sport Exerc. 2020;. https://doi.org/10.1007/s42978-020-00080-3.

26

Diekfuss JA, Janssen JA, Slutsky AB, Berry NT, Etnier JL, Wideman L, Raisbeck LD. An external focus of attention is effective for balance control when sleep-deprived. Int J Exerc Sci. 2018;11(5):84–94.

27

Diekfuss JA, Rhea CK, Schmitz RJ, Grooms DR, Wilkins RW, Slutsky AB, Raisbeck LD. The influence of attentional focus on balance control over seven days of training. J Mot Behav. 2019;51(3):281–92. https://doi.org/10.1080/00222895.2018.1468312.

28

Dingenen B, Janssens L, Claes S, Bellemans J, Staes FF. Postural stability deficits during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects. Hum Mov Sci. 2015;41:46–58. https://doi.org/10.1016/j.humov.2015.02.001.

29

Dorsey ER, Topol EJ. State of telehealth. N Engl J Med. 2016;375(2):154–61. https://doi.org/10.1056/NEJMra1601705.

30

Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013;10:98. https://doi.org/10.1186/1479-5868-10-98.

31

Ericksen HM, Thomas AC, Gribble PA, Armstrong C, Rice M, Pietrosimone B. Jump–landing biomechanics following a 4-week real-time feedback intervention and retention. Clin Biomech. 2016;32:85–91. https://doi.org/10.1016/j.clinbiomech.2016.01.005.

32

Ericksen HM, Thomas AC, Gribble PA, Doebel SC, Pietrosimone BG. Immediate effects of real-time feedback on jump-landing kinematics. J Orthop Sports Phys Ther. 2015;45(2):112–8. https://doi.org/10.2519/jospt.2015.4997.

33

Faiella F, Ricciardi M. Gamification and learning: a review of issues and research. J e-Learn Knowl Soc. 2015;11(3):13–211. https://doi.org/10.20368/1971-8829/1072.

34

Favre J, Clancy C, Dowling AV, Andriacchi TP. Modification of knee flexion angle has patient-specific effects on anterior cruciate ligament injury risk factors during jump landing. Am J Sports Med. 2016;44(6):1540–6. https://doi.org/10.1177/0363546516634000.

35

Ford KR, DiCesare CA, Myer GDD, Hewett TE. Real-time biofeedback to target risk of anterior cruciate ligament injury: a technical report for injury prevention and rehabilitation. J Sport Rehabil Tech Notes. 2015. https://doi.org/10.1123/jsr.2013-0138.

36

Ford P, De Ste Croix M, Lloyd R, Meyers R, Moosavi M, Oliver J, Till K, Williams C. The long-term athlete development model: Physiological evidence and application. J Sports Sci. 2011;29(4):389–402. https://doi.org/10.1080/02640414.2010.536849.

37

Friden T, Roberts D, Movin T, Wredmark T. Function after anterior cruciate ligament injuries: influence of visual control and proprioception. Acta Orthop Scand. 1998;69(6):590–4. https://doi.org/10.3109/17453679808999261.

38

Gokeler A, Benjaminse A, Welling W, Alferink M, Eppinga P, Otten B. The effects of attentional focus on jump performance and knee joint kinematics in patients after ACL reconstruction. Phys Ther Sport. 2015;16(2):114–20. https://doi.org/10.1016/j.ptsp.2014.06.002.

39

Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381–93. https://doi.org/10.2519/jospt.2015.5549.

40

Grooms DR, Kiefer AW, Riley MA, Ellis JD, Thomas S, Kitchen K, DiCesare CA, Bonnette S, Gadd B, Barber Foss KD, Yuan W, Silva P, Galloway R, Diekfuss JA, Leach J, Berz K, Myer GD. Brain-behavior mechanisms for the transfer of neuromuscular training adaptions to simulated sport: Initial findings from the train the brain project. J Sport Rehab. 2018;27(5):1–5. https://doi.org/10.1123/jsr.2017-0241.

41

Grooms DR, Page S, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10):1005–10. https://doi.org/10.4085/1062-6050-50-10-02.

42

Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3):180–9. https://doi.org/10.2519/jospt.2017.7003.

43

Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004;36(2):212–24. https://doi.org/10.3200/JMBR.36.2.212-224.

44

Harsted S, Holsgaard-Larsen A, Hestbæk L, Boyle E, Lauridsen HH. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system. Chiropr Man Therap. 2019;27(1):39. https://doi.org/10.1186/s12998-019-0261-z.

45

Hartman JM. Self-controlled use of a perceived physical assistance device during a balancing task. Percept Mot Skills. 2007;104(3):1005–16. https://doi.org/10.2466/pms.104.3.1005-1016.

46

Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(1):216–24. https://doi.org/10.1177/0363546512459638.

47

Iwatsuki T, Abdollahipour R, Psotta R, Lewthwaite R, Wulf G. Autonomy facilitates repeated maximum force productions. Hum Mov Sci. 2017;55:264–8. https://doi.org/10.1016/j.humov.2017.08.016.

48

Iwatsuki T, Navalta JW, Wulf G. Autonomy enhances running efficiency. J Sports Sci. 2019;37(6):685–91. https://doi.org/10.1080/02640414.2018.1522939.

49

Karsh N, Eitam B. I control therefore I do: Judgments of agency influence action selection. Cognition. 2015;138:122–31. https://doi.org/10.1016/j.cognition.2015.02.002.

50

Landers M, Wulf G, Wallmann H, Guadagnoli M. An external focus of attention attenuates balance impairment in patients with Parkinson's disease who have a fall history. Physiotherapy. 2005;91(3):152–8. https://doi.org/10.1016/j.physio.2004.11.010.

51

Landers RN. Developing a theory of gamified learning: Linking serious games and gamification of learning. Simul Gaming. 2014;45(6):752–68. https://doi.org/10.1177/1046878114563660.

52

Leotti LA, Delgado MR. The inherent reward of choice. Psychol Sci. 2011;22(10):1310–18. https://doi.org/10.1177/0956797611417005.

53

Lewthwaite R, Chiviacowsky S, Drews R, Wulf G. Choose to move: The motivational impact of autonomy support on motor learning. Psychon Bull Rev. 2015;22(5):1383–8. https://doi.org/10.3758/s13423-015-0814-7.

54

Lloyd RS, Cronin JB, Faigenbaum AD, Haff GG, Howard R, Kraemer WJ, Micheli LJ, Myer GD, Oliver JL. National strength and conditioning association position statement on long-term athletic development. J Strength Cond Res. 2016;30(6):1491–509. https://doi.org/10.1519/JSC.0000000000001387.

55

Lloyd RS, Faigenbaum AD, Myer G, Stone M, Oliver J, Jeffreys I, Pierce K. UKSCA position statement: youth resistance training. Prof Strength Cond. 2012;26:26–39. https://doi.org/10.1136/bjsports-2013-092952.

56

Lloyd RS, Meyers RW, Oliver JL. The natural development and trainability of plyometric ability during childhood. Strength Cond J. 2011;33(2):23–32. https://doi.org/10.1519/SSC.0b013e3182093a27.

57

Lloyd RS, Oliver JL. The youth physical development model: a new approach to long-term athletic development. Strength Cond J. 2012;34(3):61–72. https://doi.org/10.1519/SSC.0b013e31825760ea.

58

Lloyd RS, Oliver JL. Strength and conditioning for young athletes: science and application. Amsterdam: Routledge; 2019.

59

Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, Croix MBDS, Williams CA, Best TM, Alvar BA, Micheli LJ, Thomas DP. Long-term athletic development, part 2: barriers to success and potential solutions. J Strength Cond Res. 2015;29(5):1451–64. https://doi.org/10.1519/01.JSC.0000465424.75389.56.

60

Lloyd RS, Oliver JL, Hughes MG, Williams CA. The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. J Strength Cond Res. 2011;25(7):1889–977. https://doi.org/10.1519/JSC.0b013e3181e7faa8.

61

Lloyd RS, Oliver JL, Meyers RW, Moody JA, Stone MH. Long-term athletic development and its application to youth weightlifting. Strength Cond J. 2012;34(4):55–66. https://doi.org/10.1519/SSC.0b013e31825ab4bb.

62

Lloyd RS, Read P, Oliver JL, Meyers RW, Nimphius S, Jeffreys I. Considerations for the development of agility during childhood and adolescence. Strength Cond J. 2013;35(3):2–11. https://doi.org/10.1519/SSC.0b013e31827ab08c.

63

Maddison R, Prapavessis H, Clatworthy M. Modeling and rehabilitation following anterior cruciate ligament reconstruction. Ann Behav Med. 2006;31(1):89–98. https://doi.org/10.1207/s15324796abm3101_13.

64

Magill R. Motor learning and control. New York: McGraw-Hill Publishing; 2010.

65

Malina RM, Cumming SP, Morano PJ, Barron M, Miller SJ. Maturity status of youth football players: a noninvasive estimate. Med Sci Sports Exerc. 2005;37(6):1044–52.

66

McArdle S. Psychological rehabilitation from anterior cruciate ligament–medial collateral ligament reconstructive surgery: a case study. Sports Health. 2010;2(1):73–7. https://doi.org/10.1177/1941738109357173.

67

McNamara SW, Becker KA, Silliman-French LM. The differential effects of attentional focus in children with moderate and profound visual impairments. Front Psychol. 2017;8:1804. https://doi.org/10.3389/fpsyg.2017.01804.

68

Myer GD, Chu DA, Brent JL, Hewett TE. Trunk and hip control neuromuscular training for the prevention of knee joint injury. Clin Sports Med. 2008;27(3):425–48. https://doi.org/10.1016/j.csm.2008.02.006.

69

Myer GD, Faigenbaum AD, Chu DA, Falkel J, Ford KR, Best TM, Hewett TE. Integrative training for children and adolescents: techniques and practices for reducing sports-related injuries and enhancing athletic performance. Physician Sports Med. 2011;39(1):74–84. https://doi.org/10.3810/psm.2011.02.1864.

70

Myer GD, Ford KR, Brent JL, Hewett TE. An integrated approach to change the outcome part Ⅱ: targeted neuromuscular training techniques to reduce identified ACL injury risk factors. J Strength Cond Res. 2012;26(8):2272–92. https://doi.org/10.1519/JSC.0b013e31825c2c7d.

71

Myer GD, Ford KR, Hewett TE. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J Athl Train. 2004;39(4):352.

72

Myer GD, Lloyd RS, Brent JL, Faigenbaum AD. How young is “too young” to start training? ACSM's Health Fit J. 2013;17(5):14. https://doi.org/10.1249/FIT.0b013e3182a06c59.

73

Myer GD, Paterno MV, Ford KR, Hewett TE. Neuromuscular training techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. J Strength Cond Res. 2008;22(3):987–1014. https://doi.org/10.1519/JSC.0b013e31816a86cd.

74

Ng AK, Chan LK, Lau HY. A study of cybersickness and sensory conflict theory using a motion-coupled virtual reality system. Displays. 2020;61:101922. https://doi.org/10.1016/j.displa.2019.08.004.

75

Niederer D, Giesche F, Janko M, Niemeyer P, Wilke J, Engeroff T, Stein T, Frank J, Banzer W, Vogt L. Unanticipated jump-landing quality in patients with anterior cruciate ligament reconstruction: how long after the surgery and return to sport does the re-injury risk factor persist? Clin Biomech. 2020;72:195–201. https://doi.org/10.1016/j.clinbiomech.2019.12.021.

76

Nwachukwu BU, Adjei J, Rauck RC, Chahla J, Okoroha KR, Verma NN, Allen AA, Williams RJ 3rd. How much do psychological factors affect lack of return to play after anterior cruciate ligament reconstruction? A systematic review. Orthop J Sports Med. 2019;7(5):2325967119845313. https://doi.org/10.1177/2325967119845313.

77

Oliver J, Barillas S, Rhodri L, Moore I, Pedley J. External cueing influences drop jump performance in trained young soccer players. J Strength Cond Res. 2019. https://doi.org/10.1519/JSC.0000000000002935.

78

Oliver JL, Lloyd RS. Long-term athlete development and trainability during childhood: A brief review. Prof Strength Cond J. 2012;26:19–24. https://doi.org/10.1080/02640414.2010.536849.

79

Oman CM. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness hearing in classical musicians. Acta Otolaryngol. 1982;94(S392):4–44. https://doi.org/10.3109/00016488209108197.

80

Otte FW, Davids K, Millar S-K, Klatt S. When and how to provide feedback and instructions to athletes? How sport psychology and pedagogy insights can improve coaching interventions to enhance self-regulation in training. Front Psychol. 2020;11:1444. https://doi.org/10.3389/fpsyg.2020.01444.

81
Palaniappan SM, Duerstock BS. Developing rehabilitation practices using virtual reality exergaming. In: 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE. 2018. pp. 090–094. https://doi.org/10.1109/ISSPIT.2018.8642784.
82

Palmer K, Chiviacowsky S, Wulf G. Enhanced expectancies facilitate golf putting. Psychol Sport Exerc. 2016;22:229–32. https://doi.org/10.1016/j.psychsport.2015.08.009.

83

Palmieri-Smith RM, Thomas AC. A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev. 2009;37(3):147–53. https://doi.org/10.1097/JES.0b013e3181aa6669.

84

Pamukoff DN, Pietrosimone BG, Ryan ED, Lee DR, Blackburn JT. Quadriceps function and hamstrings co-activation after anterior cruciate ligament reconstruction. J Athl Train. 2017;52(5):422–8. https://doi.org/10.4085/1062-6050-52.3.05.

85

Park SH, Yi CW, Shin JY, Ryu YU. Effects of external focus of attention on balance: a short review. J Phys Ther Sci. 2015;27(12):3929–31. https://doi.org/10.1589/jpts.27.3929.

86

Paterno MV, Flynn K, Thomas S, Schmitt LC. Self-reported fear predicts functional performance and second ACL injury after ACL reconstruction and return to sport: a pilot study. Sports health. 2018;10(3):228–33. https://doi.org/10.1177/1941738117745806.

87

Patterns ALEM. Instruction of jump-landing technique using videotape feedback. Am J Sports Med. 2005;33(6):831. https://doi.org/10.1177/0363546504271499.

88

Pichardo AW, Oliver JL, Harrison CB, Maulder PS, Lloyd RS. Integrating models of long-term athletic development to maximize the physical development of youth. Int J Sports Sci Coach. 2018;13(6):1189–99. https://doi.org/10.1177/1747954118785503.

89

Porter J, Anton PM, Wu WFW. Increasing the distance of an external focus of attention enhances standing long jump performance. J Strength Cond Res. 2012;26(9):2389–93. https://doi.org/10.1519/JSC.0b013e31823f275c.

90

Porter J, Makaruk H, Starzak M. The role of vision and movement automization on the focus of attention effect. J Mot Learn Dev. 2016;4(2):152–68. https://doi.org/10.1123/jmld.2015-0020.

91

Porter J, Ostrowski EJ, Nolan RP, Wu WFW. Standing long-jump performance is enhanced when using an external focus of attention. J Strength Cond Res. 2010;24(7):1746–50. https://doi.org/10.1519/JSC.0b013e3181df7fbf.

92

Raisbeck LD, Diekfuss JA. Verbal cues and attentional focus: a simulated target-shooting experiment. J Mot Learn Dev. 2017;5(1):148–59. https://doi.org/10.1123/jmld.2016-0017.

93

Raisbeck LD, Diekfuss JA, Rhea CK. Does an external focus improve single-leg jump distance for individuals with chronic ankle instability? Athl Train Sports Health Care. 2020. https://doi.org/10.3928/19425864-20191106-01.

94

Raisbeck LD, Yamada M. The effects of instructional cues on performance and mechanics during a gross motor movement. Hum Mov Sci. 2019;66:149–56. https://doi.org/10.1016/j.humov.2019.04.001.

95

Raisbeck LD, Yamada M, Diekfuss JA, Kuznetsov NA. The effects of attentional focus instructions and task difficulty in a paced fine motor skill. J Mot Behav. 2020;52(3):262–70. https://doi.org/10.1080/00222895.2019.1614900.

96

Rhea CK, Diekfuss JA, Fairbrother JT, Raisbeck LD. Postural control entropy is increased when adopting an external focus of attention. Mot Control. 2019;23(2):230–42. https://doi.org/10.1123/mc.2017-0089.

97

Riley MA, Turvey MT. Variability and determinism in motor behavior. J Mot Behav. 2002;34(2):99–125. https://doi.org/10.1080/00222890209601934.

98

Salmoni AW, Schmidt RA, Walter CB. Knowledge of results and motor learning: a review and critical reappraisal. Psychol Bull. 1984;95(3):355. https://doi.org/10.1037/0033-2909.95.3.355.

99

Sanli EA, Patterson JT, Bray SR, Lee TD. Understanding self-controlled motor learning protocols through the self-determination theory. Front Psychol. 2013;3:611. https://doi.org/10.3389/fpsyg.2012.00611.

100

Schmidt RA, Lee TD. Motor learning and control: a behavioral emphasis. Champaign: Human Kinetics; 2005.

101

Simon JE, Millikan N, Yom J, Grooms DR. Neurocognitive challenged hops reduced functional performance relative to traditional hop testing. Phys Ther Sport. 2020;41:97–102. https://doi.org/10.1016/j.ptsp.2019.12.002.

102

Slater M, Sanchez-Vives MV. Enhancing our lives with immersive virtual reality. Front Robot AI. 2016;3:74. https://doi.org/10.3389/frobt.2016.00074.

103

Spitzley KA, Karduna AR. Feasibility of using a fully immersive virtual reality system for kinematic data collection. J Biomech. 2019;87:172–6. https://doi.org/10.1016/j.jbiomech.2019.02.015.

104

Stoate I, Wulf G, Lewthwaite R. Enhanced expectancies improve movement efficiency in runners. J Sports Sci. 2012;30(8):815–23. https://doi.org/10.1080/02640414.2012.671533.

105

Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943–8. https://doi.org/10.1177/0363546507299532.

106

Tipton CC, Telfer S, Cherones A, Gee AO, Kweon CY. The use of microsoft Kinect ™ for assessing readiness of return to sport and injury risk exercises: a validation study. Int J Sports Phys Ther. 2019;14(5):724–30.

107

Truong LK, Mosewich AD, Holt CJ, Le CY, Miciak M, Whittaker JL. Psychological, social and contextual factors across recovery stages following a sport-related knee injury: a scoping review. Br J Sports Med. 2020. https://doi.org/10.1136/bjsports-2019-101206.

108

Tsai Y-T, Jhu W-Y, Chen C-C, Kao C-H, Chen C-Y. Unity game engine: Interactive software design using digital glove for virtual reality baseball pitch training. Microsyst Technol. 2019; https://doi.org/10.1007/s00542-019-04302-9.

109

Urbach D, Nebelung W, Becker R, Awiszus F. Effects of reconstruction of the anterior cruciate ligament on voluntary activation of quadriceps femoris a prospective twitch interpolation study. J Bone Jt Surg Br. 2001;83(8):1104–10. https://doi.org/10.1302/0301-620x.83b8.11618.

110

Vance J, Wulf G, Töllner T, McNevin N, Mercer J. EMG activity as a function of the performer's focus of attention. J Mot Behav. 2004;36(4):450–9. https://doi.org/10.3200/JMBR.36.4.450-459.

111

Ward SH, Blackburn JT, Padua DA, Stanley LE, Harkey MS, Luc-Harkey BA, Pietrosimone B. Quadriceps neuromuscular function and jump-landing sagittal-plane knee biomechanics after anterior cruciate ligament reconstruction. J Athl Train. 2018;53(2):135–43. https://doi.org/10.4085/1062-6050-306-16.

112

Welling W, Benjaminse A, Gokeler A, Otten B. Enhanced retention of drop vertical jump landing technique: A randomized controlled trial. Hum Mov Sci. 2016;45:84–95. https://doi.org/10.1016/j.humov.2015.11.008.

113

Widenhoefer TL, Miller TM, Weigand MS, Watkins EA, Almonroeder TG. Training rugby athletes with an external attentional focus promotes more automatic adaptions in landing forces. Sports Biomech. 2019;18(2):163–73. https://doi.org/10.1080/14763141.2019.1584237.

114

Wilkerson GB. Neurocognitive reaction time predicts lower extremity sprains and strains. Int J Athl Ther Train. 2012;17(6):4–9. https://doi.org/10.1123/ijatt.17.6.4.

115

Wu WFW, Porter JM, Brown LE. Effect of attentional focus strategies on peak force and performance in the standing long jump. J Strength Cond Res. 2012;26(5):1226–31. https://doi.org/10.1519/JSC.0b013e318231ab61.

116

Wulf G. Self-controlled practice enhances motor learning: implications for physiotherapy. Physiotherapy. 2007;93(2):96–101. https://doi.org/10.1016/j.physio.2006.08.005.

117

Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 2013;6(1):77–104. https://doi.org/10.1080/1750984X.2012.723728.

118

Wulf G, Adams N. Small choices can enhance balance learning. Hum Mov Sci. 2014;38:235–40. https://doi.org/10.1016/j.humov.2014.10.007.

119

Wulf G, Chiviacowsky S, Schiller E, Ávila LTG. Frequent external focus feedback enhances motor learning. Front Psychol. 2010;1:190. https://doi.org/10.3389/fpsyg.2010.00190.

120

Wulf G, Dufek JS, Lozano L, Pettigrew C. Increased jump height and reduced EMG activity with an external focus. Hum Mov Sci. 2010;29(3):440–8. https://doi.org/10.1016/j.humov.2009.11.008.

121

Wulf G, Freitas HE, Tandy RD. Choosing to exercise more: small choices increase exercise engagement. Psychol Sport Exerc. 2014;15(3):268–71. https://doi.org/10.1016/j.psychsport.2014.01.007.

122

Wulf G, Höß M, Prinz W. Instructions for motor learning: differential effects of internal versus external focus of attention. J Mot Behav. 1998;30(2):169–79. https://doi.org/10.1080/00222899809601334.

123

Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev Psychon Bul Rev. 2016. https://doi.org/10.3758/s13423-015-0999-9.

124

Wulf G, Töllner T, Shea CH. Attentional focus effects as a function of task difficulty. Res Q Exerc Sport. 2007;78(3):257–64. https://doi.org/10.1080/02701367.2007.10599423.

125

Zachry T, Wulf G, Mercer J, Bezodis N. Increased movement accuracy and reduced EMG activity as the result of adopting an external focus of attention. Brain Res Bull. 2005;67(4):304–9. https://doi.org/10.1016/j.brainresbull.2005.06.035.

126

Zainuddin Z, Chu SKW, Shujahat M, Perera CJ. The impact of gamification on learning and instruction: a systematic review of empirical evidence. Educ Res Rev. 2020;30:100326. https://doi.org/10.1016/j.edurev.2020.100326.

Journal of Science in Sport and Exercise
Pages 3-16
Cite this article:
Diekfuss JA, Bonnette S, Hogg JA, et al. Practical Training Strategies to Apply Neuro-Mechanistic Motor Learning Principles to Facilitate Adaptations Towards Injury-Resistant Movement in Youth. Journal of Science in Sport and Exercise, 2021, 3(1): 3-16. https://doi.org/10.1007/s42978-020-00083-0

356

Views

13

Crossref

20

Scopus

0

CSCD

Altmetrics

Received: 20 May 2020
Accepted: 03 September 2020
Published: 21 October 2020
© Beijing Sport University 2020
Return