Article Link
Collect
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Article

Heart Rate Variability from Underwater Spiroergometry: How Meaningful?

Andreas Koch1Fabian Möller2Elena Jacobi2Thomas Muth3Clark Pepper4Uwe Hoffmann2Jochen D. Schipke5 ()
German Naval Medical Institute, Maritime Medicine, Kronshagen, Germany
Department of Exercise Physiology, Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
Institute of Occupational, Social and Environmental Medicine, Heinrich-Heine-University, Düsseldorf, Germany
Department of Neurology, Johanna Etienne Hospital, Neuss, Germany
Forschungsgruppe Experimentelle Chirurgie, Universitäts-Klinikum Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
Show Author Information

Abstract

Cardiovascular fitness of divers is overwhelmingly performed using bicycle ergometry. A more sport-specific alternative presents fit2dive, an underwater spiroergometry system. Purpose of this exploratory study: using fit2dive to investigate the diagnostic value of measures of heart rate variability (HRV) after markedly increasing physical load. Ten scuba divers employed the fit2dive system and increased fin-swimming speed until exhaustion. Breathing gas consumption (V̇E) and heart rate (HR) were measured. A three-lead ECG was recorded to analyze for time and frequency domain HRV-measures. V̇E increased from 16.5 ± 6.5 to 68.3 ± 26.6 L/min. HR increased from 96 ± 13 beats/min (mean ± SD) at rest to 170 ± 14 beats/min before exhaustion. Global variability (SDNN: 132 ± 42 vs. 54 ± 17 ms) decreased along with two measures of parasympathetic activity (RMSSD: 59 ± 31 vs. 24 ± 16 ms; pNN50: 22% ± 12% vs. 3% ± 3%). Measures from the frequency domain decreased [low frequency (LF): 3167 ± 2651 vs. 778 ± 705 ms2] or remained unaltered [high frequency (HF): 885 ± 652 vs. 431 ± 463 ms2]. Thus, LF/HF decreased from 4.3 ± 2.3 to 2.5 ± 1.4. The sports-specific fit2dive can help assessing diving fitness by employing HRV measures. However, this study supports the view that these measures much depend on HR. Thus, HRV measures regarding altered autonomic control during exercise will lead to serious misinterpretation: as HR increases, variability decreases.

References

1

Almeling M, Schega L, Witten F, Lirk P, Wulf K. Validity of cycle test in air compared to underwater cycling. Undersea Hyperb Med. 2006;33(1): 45–53.

2

Åstrand P-O, Bergh U, Kilbom Å. A 33-yr follow-up of peak oxygen uptake and related variables of former physical education students. J Appl Physiol. 1997;82(6): 1844–52.

3
Aumann S, Röschmann M. Tauchtauglichkeit bei Frauen und spezifische gynäkologische Fragestellungen Sven Aumann und Marco Röschmann. aqua med. 2016. Available from URL: https://www.aqua-med.eu/medizin/aerztlicheleistungen/medizinische-artikel/medizinische-artikel/tauchtauglichkeit-bei-frauen/. Accessed 6 July 2021.
4

Banach T, Grandys M, Juszczak K, Kolasińska-Kloch W, Zoładź J, Laskiewicz J, Thor PJ. Heart rate variability during incremental cycling exercise in healthy untrained young men. Folia Med Crac. 2004;45(1–2):3–12.

5

Berntson GG, Thomas Bigger J, Eckberg DL, Grossman P, Kaufmann PG, Malik M, H N Nagaraja HN, Porges SW, Saul JP, Stone PH, van der Molen MW. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623–48.

6

Bigger JTJ, Fleiss JL, Rolnitzky LM, Steinman RC. Stability over time of heart period variability in patients with previous myocardial infarction and ventricular arrhythmias. The CAPS and ESVEM investigators. Am J Cardiol. 1992;69(8):718–23.

7

Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26.

8

Bourdillon N, Schmitt L, Yazdani S, Vesin J-M, Millet GP. Minimal window duration for accurate HRV recording in athletes. Front Neurosci. 2017;11:456.

9

Choukroun ML, Guenard H, Varene P. Pulmonary capillary blood volume during immersion in water at different temperatures. Undersea Biomed Res. 1983;10:331–42.

10

Coates AM, Hammond S, Burr JF. Investigating the use of pre-training measures of autonomic regulation for assessing functional overreaching in endurance athletes. Eur J Sport Sci. 2018;18(7):965–74.

11

Coumel P, Maison-Blanche P, Catuli D. Heart rate and heart rate variability in normal young adults. J Cardiovasc Electrophysiol. 1994;5:899–911.

12

de Geus EJC, Gianaros PJ, Brindle RC, Jennings JR, Berntson GG. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology. 2019;56(2):e13287.

13

Dong J-G. The role of heart rate variability in sports physiology. Exp Ther Med. 2016;11:1531–6.

14

Düking P, Zinner C, Reed JL, Holmberg H, Sperlich B. Predefined vs data-guided training prescription based on autonomic nervous system variation: a systematic review. Scand J Med Sci Sports. 2020;30(12):2291–304.

15

Dwyer J. Estimation of oxygen uptake from heart rate response to undersea work. Undersea Biomed Res. 1983;10(2):77–87.

16

Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol. 1981;241(4):H620–629.

17

Hottenrott K, Hoos O, Esperer HD. Herzfrequenzvariabilität und Sport. Herz Kardiovaskuläre Erkrankungen. 2006;31:544–52.

18

Kajaia T, Maskhulia L, Chelidze K, Akhalkatsi V, Kakhabrishvili Z. The effects of non-functional overreaching and overtraining on autonomic nervous system function in highly trained athletes. Ga Med News. 2017;(264):97–103.

19

Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng. 1993;21(3):245–311.

20

Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310.

21

Lambrechts K, Germonpre P, Charbel B, Cialoni D, Musimu P, Sponsiello N, Marroni A, Pastouret F, Balestra C. Ultrasound lung “comets” increase after breath-hold diving. Eur J Appl Physiol. 2011;111(4):707–13.

22

Lombardi F, Malliani A. Power spectral analysis of RR variability. G Ital Cardiol. 1992;22(4):501–9.

23

Lundell RV, Räisänen-Sokolowski AK, Wuorimaa TK, Ojanen T, Parkkola KI. Diving in the Arctic: cold water immersion’s effects on heart rate variability in navy divers. Front Physiol. 2019;10:1600.

24

Malik M, Camm AJ. Heart rate variability and clinical cardiology. Br Heart J. 1994;72(6):3–6.

25

Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–92.

26

Mano Y. Evaluation of diving stress implication of analysis of work loads. Sangyo Igaku. 1987;29(3):202–9.

27

Manresa-Rocamora A, Flatt AA, Casanova-Lizón A, Ballester-Ferrer JA, Sarabia JM, Vera-Garcia FJ, Moya-Ramón M. Heart rate-based indices to detect parasympathetic hyperactivity in functionally overreached athletes. A meta-analysis. Scand J Med Sci Sports. 2021. https://doi.org/10.1111/sms.13932.

28

Marchitto N, Iannarelli N, Paparello PT, Cioeta E, Parisi F, Pirrone S, Raimondi G. Cardiovascular risk in scuba divers. J Sports Med Phys Fit. 2019;59(10):1779–82.

29

Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;13(1):1–24.

30

Möller F, Jacobi E, Hoffmann U, Muth T, Schipke JD. Oxygen-enriched air decreases ventilation during high-intensity fin-swimming underwater. Int J Sports Med. 2021. https://doi.org/10.1055/a-1554-5093.

31

Paulev PE, Pokorski M, Honda Y, Ahn B, Masuda A, Kobayashi T, Nishibayashi Y, Sakakibara Y, Tanaka M, Nakamura W. Facial cold receptors and the survival reflex “diving bradycardia” in man. Jpn J Physiol. 1990;40(5):701–12.

32

Pelzer M, Hafner D, Arnold G, Schipke JD. Minimal interval length for safe determination of brief heart rate variability. Z Kardiol. 1995;84(12):986–94.

33

Pendergast DR, Lundgren CEG. The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol (Bethesda, Md: 1985). 1985;106(1):276–83.

34

Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112(11):3729–41.

35

Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773–81.

36

Pluto R, Cruze SA, Weiss M, Hotz T, Mandel P, Weicker H. Cardiocirculatory, hormonal, and metabolic reactions to various forms of ergometric tests. Int J Sports Med. 1988;9(Suppl 2):S79-88.

37

Reyes del Paso GA, Langewitz W, Mulder LJM, van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies: LF HRV and sympathetic cardiac tone. Psychophysiology. 2013;50:477–87.

38

Sacha J. Interaction between heart rate and heart rate variability: HR and HRV interaction. Ann Noninvasive Electrocardiol. 2014;19(3):207–16.

39

Sacha J, Pluta W. Different methods of heart rate variability analysis reveal different correlations of heart rate variability spectrum with average heart rate. J Electrocardiol. 2005;38(1):47–53.

40

Salerni S, Di Francescomarino S, Cadeddu C, Acquistapace F, Maffei S, Gallina S. The different role of sex hormones on female cardiovascular physiology and function: not only oestrogens. Eur J Clin Invest. 2015;45(6):634–45.

41

Sandercock GRH, Brodie DA. The use of heart rate variability measures to assess autonomic control during exercise. Scand J Med Sci Sports. 2006;16(5):302–13.

42

Sato N, Miyake S. Cardiovascular reactivity to mental stress: relationship with menstrual cycle and gender. J Physiol Anthropol Appl Hum Sci. 2004;23(6):215–23.

43

Schipke JD, Pelzer M. Effect of immersion, submersion, and scuba diving on heart rate variability. Br J Sports Med. 2001;35(3):174–80.

44

Schirato SR, El-Dash I, El-Dash V, Natali JE, Starzynski PN, Chaui-Berlinck JG. Heart rate variability changes as an indicator of decompression-related physiological stress. Undersea Hyperb Med. 2018;45(2):173–82.

45

Schmitt L, Regnard J, Millet GP. Monitoring fatigue status with HRV measures in elite athletes: an avenue beyond RMSSD? Front Physiol. 2015;6:343.

46

Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1040.

47

Singh N, Moneghetti KJ, Christle JW, Hadley D, Plews D, Froelicher V. Heart rate variability: an old metric with new meaning in the era of using mHealth technologies for health and exercise training guidance. Part one: physiology and methods. Arrhythm Electrophysiol Rev. 2018;7(3):193.

48

Stauss HM. Heart rate variability: just a surrogate for mean heart rate? Hypertension. 2014;64(6):1184–6.

49

Steinberg FTT, Steegmanns A, Dalecki M, Röschmann M, Hoffmann U. fit2dive—a field test for assessing the specific capability of underwater fin swimming with SCUBA. Int J Perform Anal Sport. 2011;11(1):197–208.

50

Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly. 2004;134(35–36):514–22.

51

Tada Y, Yoshizaki T, Tomata Y, Yokoyama Y, Sunami A, Hida A, Kawano Y. The impact of menstrual cycle phases on cardiac autonomic nervous system activity: an observational study considering lifestyle (diet, physical activity, and sleep) among Female College Students. J Nutr Sci Vitaminol. 2017;63(4):249–55.

52

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.

53

Vitale JA, Bonato M, La Torre AL, Banfi G. Heart rate variability in sport performance: do time of day and chronotype play a role? J Clin Med. 2019;8(5):723.

54

Whayne TF. Medical management and risk reduction of the cardiovascular effects of underwater diving. Curr Vasc Pharmacol. 2018;16(4):344–54.

55

Zenske A, Kähler W, Koch A, Oellrich K, Pepper C, Muth T, Schipke JD. Does oxygen-enriched air better than normal air improve sympathovagal balance in recreational divers? An open-water study. Res Sports Med. 2019;28(3):1–16.

56

Zenske A, Koch A, Kähler W, Oellrich K, Pepper C, Muth T, Schipke JD. Assessment of a dive incident using heart rate variability. Diving Hyperb Med. 2020;50(2):157–63.

Journal of Science in Sport and Exercise
Pages 116-122
Cite this article:
Koch A, Möller F, Jacobi E, et al. Heart Rate Variability from Underwater Spiroergometry: How Meaningful?. Journal of Science in Sport and Exercise, 2023, 5(2): 116-122. https://doi.org/10.1007/s42978-021-00153-x
Metrics & Citations  
Article History
Copyright
Return