AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article

Predicting an Athlete's Physiological and Haematological Response to Live High-Train High Altitude Training Using a Hypoxic Sensitivity Test

Gareth Turner1,2 ( )Kate L. Spilsbury3David J. Green4Barry W. Fudge5Jamie S. M. Pringle6Alan J. Richardson1Neil S. Maxwell1
Environmental Extreme Laboratory, University of Brighton, Eastbourne, UK
English Institute of Sport, Bisham Abbey, UK
Queensland Academy of Sport, Brisbane, Australia
English Institute of Sport, Loughborough, UK
Aspire Academy, Doha, Qatar
University of Birmingham, Birmingham, UK
Show Author Information

Abstract

Purpose

Elite endurance runners frequently utilise live high-train high (LHTH) altitude training to improve endurance performance at sea level (SL). Individual variability in response to the hypoxic exposure have resulted in contradictory findings. In the present case study, changes in total haemoglobin mass (tHbmass) and physiological capacity, in response to 4-weeks of LHTH were documented. We tested if a hypoxic sensitivity test (HST) could predict altitude-induced adaptations to LHTH.

Methods

Fifteen elite athletes were selected to complete 4-weeks of LHTH (~ 2400 m). Athletes visited the laboratory for preliminary testing (PRE), to determine lactate threshold (LT), lactate turn point (LTP), maximal oxygen uptake VO2max and tHbmass. During LHTH, athletes completed daily physiological measures [arterial oxygen saturation (SpO2) and body mass] and subjective wellbeing questions. Testing was repeated, for those who completed the full camp, post-LHTH (POST). Additionally, athletes completed the HST prior to LHTH.

Results

A difference (P < 0.05) was found from PRE to POST in average tHbmass (1.8% ± 3.4%), VO2max (2.7% ± 3.4%), LT (6.1% ± 4.6%) and LTP (5.4% ± 3.8%), after 4-weeks LHTH. HST revealed a decrease in oxygen saturation at rest (ΔSpr) and higher hypoxic ventilatory response at rest (HVRr) predicted individual changes tHbmass. Lower hypoxic cardiac response at rest (HCRr) and higher HVRr predicted individual changes VO2max.

Conclusion

Four weeks of LHTH at ~ 2400 m increased tHbmass and enhanced physiological capacity in elite endurance runners. There was no observed relationship between these changes and baseline characteristics, pre-LHTH serum ferritin levels, or reported incidents of musculoskeletal injury or illness. The HST did however, estimate changes in tHbmass and VO2max. HST prior to LHTH could allow coaches and practitioners to better inform the acclimatisation strategies and training load application of endurance runners at altitude.

References

1

Adams WC, Bernauer EM, Dill DB, Bomar JB. Effects of equivalent sea-level and altitude training on VO2max and running performance. J Appl Physiol. 1975;39(2):262–6. https://doi.org/10.1152/jappl.1975.39.2.262.

2

Álvarez-Herms J, Julià-Sánchez S, Hamlin MJ, Corbi F, Pagès T, Viscor G. Popularity of hypoxic training methods for endurance-based professional and amateur athletes. Physiol Behav. 2015;143:35–8. https://doi.org/10.1016/j.physbeh.2015.02.020.

3

Bailey DM, Davies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med. 1997;31(3):183–90. https://doi.org/10.1136/bjsm.31.3.183.

4

Bailey DM, Davies B, Romer L, Castell L, Newsholme E, Gandy G. Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur J Appl Physiol Occup Physiol. 1998;78(4):360–8. https://doi.org/10.1007/s004210050432.

5

Bärtsch P, Saltin B, Dvorak J. Consensus statement on playing football at different altitude. Scand J Med Sci Sports. 2008;18(Suppl 1):96–9. https://doi.org/10.1111/j.1600-0838.2008.00837.x.

6

Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84. https://doi.org/10.1097/00005768-200001000-00012.

7

Beidleman BA, Fulco CS, Staab JE, Andrew SP, Muza SR. Cycling performance decrement is greater in hypobaric versus normobaric hypoxia. Extrem Physiol Med. 2014;3:8. https://doi.org/10.1186/2046-7648-3-8.

8

Benoit H, Busso T, Castells J, Denis C, Geyssant A. Influence of hypoxic ventilatory response on arterial O2 saturation during maximal exercise in acute hypoxia. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):101–5. https://doi.org/10.1007/BF00964122.

9

Bernardi L, Schneider A, Pomidori L, Paolucci E, Cogo A. Hypoxic ventilatory response in successful extreme altitude climbers. Eur Respir J. 2006;27(1):165–71. https://doi.org/10.1183/09031936.06.00015805.

10

Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27. https://doi.org/10.2165/00007256-200939020-00002.

11

Bourdillon N, Fan JL, Kayser B. Cerebral oxygenation during the Richalet hypoxia sensitivity test and cycling time-trial performance in severe hypoxia. Eur J Appl Physiol. 2014;114(5):1037–48. https://doi.org/10.1007/s00421-014-2835-8.

12

Brocherie F, Schmitt L, Millet GP. Hypoxic dose, intensity distribution, and fatigue monitoring are paramount for “live high-train low” effectiveness. Eur J Appl Physiol. 2017;117(10):2119–20. https://doi.org/10.1007/s00421-017-3664-3.

13

Burtscher M, Flatz M, Faulhaber M. Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt Med Biol. 2004;5(3):335–40. https://doi.org/10.1089/ham.2004.5.335.

14

Chapman RF. The individual response to training and competition at altitude. Br J Sports Med. 2013;47(Suppl 1):i40–4. https://doi.org/10.1136/bjsports-2013-092837.

15

Chapman RF, Karlsen T, Resaland GK, Ge RL, Harber MP, Witkowski S, Stray-Gundersen J, Levine BD. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol. 2014;116(6):595–603. https://doi.org/10.1152/japplphysiol.00634.2013.

16

Chapman RF, Laymon AS, Levine BD. Timing of arrival and pre-acclimatization strategies for the endurance athlete competing at moderate to high altitudes. High Alt Med Biol. 2013;14(4):319–24. https://doi.org/10.1089/ham.2013.1022.

17

Chapman RF, Levine BD. Altitude training for the marathon. Sports Med. 2007;37(4–5):392–5. https://doi.org/10.2165/00007256-200737040-00031.

18

Chapman RF, Stager JM, Tanner DA, Stray-Gundersen J, Levine BD. Impairment of 3000-m run time at altitude is influenced by arterial oxyhemoglobin saturation. Med Sci Sports Exerc. 2011;43(9):1649–56. https://doi.org/10.1249/MSS.0b013e318211bf45.

19

Chapman RF, Stray-Gundersen J, Levine BD. Epo production at altitude in elite endurance athletes is not associated with the sea level hypoxic ventilatory response. J Sci Med Sport. 2010;13(6):624–9. https://doi.org/10.1016/j.jsams.2010.02.001.

20

Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol. 1998;85(4):1448–56. https://doi.org/10.1152/jappl.1998.85.4.1448.

21

Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9. https://doi.org/10.1037/0033-2909.112.1.155.

22

Constantini K, Wilhite DP, Chapman RF. A clinician guide to altitude training for optimal endurance exercise performance at sea level. High Alt Med Biol. 2017;18(2):93–101. https://doi.org/10.1089/ham.2017.0020.

23

Dick FW. Training at altitude in practice. Int J Sports Med. 1992;13(Suppl 1):S203–5. https://doi.org/10.1055/s-2007-1024640.

24

Dill DB, Adams WC. Maximal oxygen uptake at sea level and at 3,090-m altitude in high school champion runners. J Appl Physiol. 1971;30(6):854–9. https://doi.org/10.1152/jappl.1971.30.6.854.

25

Durand F, Raberin A. Exercise-induced hypoxemia in endurance athletes: consequences for altitude exposure. Front Sports Act Living. 2021;3(1):663674. https://doi.org/10.3389/fspor.2021.663674.

26

Flaherty G, O’Connor R, Johnston N. Altitude training for elite endurance athletes: a review for the travel medicine practitioner. Travel Med Infect Dis. 2016;14(3):200–11. https://doi.org/10.1016/j.tmaid.2016.03.015.

27

Frese F, Friedmann-Bette B. Effects of repetitive training at low altitude on erythropoiesis in 400 and 800 m runners. Int J Sports Med. 2010;31(6):382–8. https://doi.org/10.1055/s-0030-1248328.

28

Friedmann B, Frese F, Menold E, Kauper F, Jost J, Bärtsch P. Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med. 2005;39(3):148–53. https://doi.org/10.1136/bjsm.2003.011387.

29

Fudge BW, Pringle JSM, Maxwell NS, Turner G, Ingham SA, Jones AM. Altitude training for elite endurance performance: a 2012 update. Curr Sports Med Rep. 2012;11(3):148–54. https://doi.org/10.1249/JSR.0b013e31825640d5.

30

Garvican-Lewis LA, Govus AD, Peeling P, Abbiss CR, Gore CJ. Iron supplementation and altitude: decision making using a regression tree. J Sports Sci Med. 2016;15:204–5.

31

Garvican-Lewis LA, Halliday I, Abbiss CR, Saunders PU, Gore CJ. Altitude exposure at 1800 m increases haemoglobin mass in distance runners. J Sports Sci Med. 2015;14(2):413–7.

32

Gore CJ, Hahn AG, Burge CM, Telford RD. VO2 max and haemoglobin mass of trained athletes during high intensity training. Int J Sports Med. 1997;28(6):477–82. https://doi.org/10.1055/s-2007-972667.

33

Gore CJ, Hopkins WG. Counterpoint: positive effects of intermittent hypoxia (live high:train low) on exercise performance are not mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99(5):2055–7. https://doi.org/10.1152/japplphysiol.00820.2005.

34

Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, Wachsmuth NB, Clark SA, McLean BD, Friedmann-Bette B, Neya M, Pottgiesser T, Schumacher YO, Schmidt WF. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(Suppl 1):i31–9. https://doi.org/10.1136/bjsports-2013-092840.

35

Gough CE, Sharpe K, Garvican LA, Anson JM, Saunders PU, Gore CJ. The effects of injury and illness on haemoglobin mass. Int J Sports Med. 2013;34(9):763–9. https://doi.org/10.1055/s-0033-1333692.

36

Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS One. 2015;10(8):e0135120. https://doi.org/10.1371/journal.pone.0135120.

37

Heikura IA, Burke LM, Bergland D, Uusitalo ALT, Mero AA, Stellingwerff T. Impact of energy availability, health, and sex on hemoglobin-mass responses following live-high–train-high altitude training in elite female and male distance athletes. Int J Sports Physiol Perform. 2018;13(8):1090–6. https://doi.org/10.1123/ijspp.2017-0547.

38

Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. https://doi.org/10.1249/MSS.0b013e31818cb278.

39

Jones AM. The physiology of the world record holder for the women’s marathon. Int J Sports Sci Coach. 2006;1(2):101–16. https://doi.org/10.1260/174795406777641258.

40

Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol. 1991;70(2):683–7. https://doi.org/10.1152/jappl.1991.70.2.683.

41

Koivisto-Mørk AE, Svendsen IS, Skattebo Ø, Hallén J, Paulsen G. Impact of baseline serum ferritin and supplemental iron on altitude-induced hemoglobin mass response in elite athletes. Scand J Med Sci Sports. 2021;31(9):1764–73. https://doi.org/10.1111/sms.13982.

42

Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102–12. https://doi.org/10.1152/jappl.1997.83.1.102.

43

Levine BD, Stray-Gundersen J. Point: Positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99(5):2053–5. https://doi.org/10.1152/japplphysiol.00877.2005.

44

Lundby C, Millet GP, Calbet JA, Bärtsch P, Subudhi AW. Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med. 2012;46(11):792–5. https://doi.org/10.1136/bjsports-2012-091231.

45

McLean BD, Buttifant D, Gore CJ, White K, Kemp J. Year-to-year variability in haemoglobin mass response to two altitude training camps. Br J Sports Med. 2013;47(Suppl 1):i51–8. https://doi.org/10.1136/bjsports-2013-092744.

46

Millet GP, Brocherie F. Hypoxic training is beneficial in elite athletes. Med Sci Sports Exerc. 2020;52(2):515–8. https://doi.org/10.1249/MSS.0000000000002142.

47

Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25. https://doi.org/10.2165/11317920-000000000-00000.

48

Mujika I, Sharma AP, Stellingwerff T. Contemporary periodization of altitude training for elite endurance athletes: a narrative review. Sports Med. 2019;49(11):1651–69. https://doi.org/10.1007/s40279-019-01165-y.

49

Nummela A, Eronen T, Koponen A, Tikkanen H, Peltonen JE. Variability in hemoglobin mass response to altitude training camps. Scand J Med Sci Sports. 2021;31(1):44–51. https://doi.org/10.1111/sms.13804.

50

Okazaki K, Stray-Gundersen J, Chapman RF, Levine BD. Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. J Appl Physiol. 2019;127(6):1569–78. https://doi.org/10.1152/japplphysiol.00115.2018.

51

Owen JR. A preliminary evaluation of altitude training particularly as carried out by some members of the Olympic teams of Great Britain and of other European countries in 1972. Br J Sports Med. 1974;8(1):9–17. https://doi.org/10.1136/bjsm.8.1.9.

52

Paradis-Deschênes P, Joanisse DR, Billaut F. Ischemic preconditioning improves time trial performance at moderate altitude. Med Sci Sports Exerc. 2018;50(3):533–41. https://doi.org/10.1249/MSS.0000000000001473.

53

Pla R, Brocherie F, Le Garrec S, Richalet JP. Effectiveness of the hypoxic exercise test to predict altitude illness and performance at moderate altitude in high-level swimmers. Physiol Rep. 2020;8(8):e14390. https://doi.org/10.14814/phy2.14390.

54

Prommer N, Schmidt W. Loss of CO from the intravascular bed and its impact on the optimised CO-rebreathing method. Eur J Appl Physiol. 2007;100(4):383–91. https://doi.org/10.1007/s00421-007-0439-2.

55

Richalet JP, Larmignat P, Poitrine E, Letournel M, Canouï-Poitrine F. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med. 2012;185(2):192–8. https://doi.org/10.1164/rccm.201108-1396OC.

56

Robach P, Lundby C. Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports. 2012;22(3):303–5. https://doi.org/10.1111/j.1600-0838.2012.01457.x.

57

Robertson EY, Saunders PU, Pyne DB, Aughey RJ, Anson JM, Gore CJ. Reproducibility of performance changes to simulated live high/train low altitude. Med Sci Sports Exerc. 2010;42(2):394–401. https://doi.org/10.1249/MSS.0b013e3181b34b57.

58

Robertson EY, Saunders PU, Pyne DB, Gore CJ, Anson JM. Effectiveness of intermittent training in hypoxia combined with live high/train low. Eur J Appl Physiol. 2010;110(2):379–87. https://doi.org/10.1007/s00421-010-1516-5.

59

Rusko HK, Tikkanen HO, Peltonen JE. Altitude and endurance training. J Sports Sci. 2004;22(10):928–45. https://doi.org/10.1080/02640410400005933.

60

Saunders PU, Garvican-Lewis LA, Schmidt WF, Gore CJ. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. Br J Sports Med. 2013;47(Suppl 1):i26–30. https://doi.org/10.1136/bjsports-2013-092841.

61

Saunders PU, Telford RD, Pyne DB, Hahn AG, Gore CJ. Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure. J Sci Med Sport. 2009;12(1):67–72. https://doi.org/10.1016/j.jsams.2007.08.014.

62

Schmidt W, Prommer N. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol. 2005;95(5–6):486–95. https://doi.org/10.1007/s00421-005-0050-3.

63

Schmidt W, Prommer N. Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev. 2010;38(2):68–75. https://doi.org/10.1097/JES.0b013e3181d4957a.

64

Schmitt L, Bouthiaux S, Millet GP. Eleven years’ monitoring of the world’s most successful male biathlete of the last decade. Int J Sports Physiol Perform. 2021;16(6):900–5. https://doi.org/10.1123/ijspp.2020-0148.

65

Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):49–56. https://doi.org/10.1111/j.1600-0838.2004.00418.x.

66

Shannon OM, Duckworth L, Barlow MJ, Woods D, Lara J, Siervo M, O'Hara JP. Dietary nitrate supplementation enhances high-intensity running performance in moderate normobaric hypoxia, independent of aerobic fitness. Nitric Oxide. 2016;59:63–70. https://doi.org/10.1016/j.niox.2016.08.001.

67

Sharma AP, Saunders PU, Garvican-Lewis LA, Clark B, Welvaert M, Gore CJ, Thompson KG. Improved performance in national-level runners with increased training load at 1600 and 1800 m. Int J Sports Physiol Perform. 2019;14(3):286–95. https://doi.org/10.1123/ijspp.2018-0104.

68

Shaw AJ, Ingham SA, Atkinson G, Folland JP. The correlation between running economy and maximal oxygen uptake: cross-sectional and longitudinal relationships in highly trained distance runners. PLoS One. 2015;10(4):e0123101. https://doi.org/10.1371/journal.pone.0123101.

69

Shaw AJ, Ingham SA, Folland JP. The efficacy of downhill running as a method to enhance running economy in trained distance runners. Eur J Sport Sci. 2018;18(5):630–8. https://doi.org/10.1080/17461391.2018.1449892.

70

Siebenmann C, Dempsey JA. Hypoxic training is not beneficial in elite athletes. Med Sci Sports Exerc. 2020;52(2):519–22. https://doi.org/10.1249/MSS.0000000000002141.

71

Sinex JA, Chapman RF. Hypoxic training methods for improving endurance exercise performance. J Sport Heal Sci. 2015;4(4):325–32. https://doi.org/10.1016/j.jshs.2015.07.005.

72

Solli GS, Tønnessen E, Sandbakk Ø. The training characteristics of the world’s most successful female cross-country skier. Front Physiol. 2017;8:1069. https://doi.org/10.3389/fphys.2017.01069.

73

Sperlich B, Achtzehn S, de Marées M, von Papen H, Mester J. Load management in elite German distance runners during 3-weeks of high-altitude training. Physiol Rep. 2016;4(12):e12845. https://doi.org/10.14814/phy2.12845.

74

Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, Burke LM. Nutrition and altitude: strategies to enhance adaptation, improve performance and maintain health: a narrative review. Sports Med. 2019;49(Suppl 2):169–84. https://doi.org/10.1007/s40279-019-01159-w.

75

Svedenhag J, Saltin B, Johansson C, Kaijser L. Aerobic and anaerobic exercise capacities of elite middle-distance runners after two weeks of training at moderate altitude. Scand J Med Sci Sports. 2007;1(4):205–14. https://doi.org/10.1111/j.1600-0838.1991.tb00297.x.

76

Tjelta LI. Three Norwegian brothers all European 1500 m champions: What is the secret? Int J Sports Sci Coach. 2019;14(5):694–700. https://doi.org/10.1177/1747954119872321.

77

Turner G, Fudge BW, Pringle JSM, Maxwell NS, Richardson AJ. Altitude training in endurance running: perceptions of elite athletes and support staff. J Sports Sci. 2019;37(2):163–72. https://doi.org/10.1080/02640414.2018.1488383.

78

Turner G, Pringle JSM, Ingham SA, Fudge BW, Richardson AJ, Maxwell NS. The influence of carbon monoxide bolus on the measurement of total haemoglobin mass using the optimized CO-rebreathing method. Physiol Meas. 2014;35(2):N11–9. https://doi.org/10.1088/0967-3334/35/2/N11.

79

Turner G, Richardson AJ, Maxwell NS, Pringle JSM. Comparison of total haemoglobin mass measured with the optimized carbon monoxide rebreathing method across different Radiometer™ ABL-80 and OSM-3 hemoximeters. Physiol Meas. 2014;35(12):N41–9. https://doi.org/10.1088/0967-3334/35/12/N41.

80

Wachsmuth NB, Völzke C, Prommer N, Schmidt-Trucksäss A, Frese F, Spahl O, Eastwood A, Stray-Gundersen J, Schmidt W. The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):1199–211. https://doi.org/10.1007/s00421-012-2536-0.

81

West JB. Human limits for hypoxia: the physiological challenge of climbing Mt. Everest Ann N Y Acad Sci. 2000;899:15–27. https://doi.org/10.1111/j.1749-6632.2000.tb06173.x.

82

White AC, Salgado RM, Schneider S, Loeppky JA, Astorino TA, Mermier CM. Does heat acclimation improve exercise capacity at altitude? a cross-tolerance model. Int J Sports Med. 2014;35(12):975–81. https://doi.org/10.1055/s-0034-1368724.

Journal of Science in Sport and Exercise
Pages 371-385
Cite this article:
Turner G, Spilsbury KL, Green DJ, et al. Predicting an Athlete's Physiological and Haematological Response to Live High-Train High Altitude Training Using a Hypoxic Sensitivity Test. Journal of Science in Sport and Exercise, 2022, 4(4): 371-385. https://doi.org/10.1007/s42978-022-00167-z

495

Views

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 02 November 2021
Accepted: 17 April 2022
Published: 24 August 2022
© Beijing Sport University 2022
Return