AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Phylogenetic definitions for 25 higher-level clade names of birds

Naturalis Biodiversity Center, Darwinweg 2, PO Box 9517, 2300, RA, Leiden, the Netherlands
Department of Biology, University of Florida, Gainesville, FL, 32607, USA
Department of Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE–104 05, Stockholm, Sweden
Senckenberg Research Institute and Natural History Museum Frankfurt, Ornithological Section, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, UK
Show Author Information

Abstract

Knowledge of the higher-level phylogenetic relationships of birds has grown substantially during the past two decades due to the application of genomic data. However, the nomenclature of higher-level taxa has not become more stable, due to the lack of regulation of taxon names above the level of superfamily by the ICZN, and the usage of rank-based nomenclature, which is not tied to clades in a phylogeny. Lack of regulation and the instability of rank-based nomenclature impede effective communication among systematists. We review support for higher-level avian clades using a set of 10 phylogenomic data sets, and identify clades that are supported by congruency of at least four of these. We provide formal definitions of the names of these clades based on the rules of the recently published PhyloCode. The names of 25 clades are here defined using minimum-crown-clade (n ​= ​23), minimum-clade (n ​= ​1) and maximum-crown-clade (n ​= ​1) definitions. Five new names are introduced here: Dinocrypturi, Pteroclimesites, Musophagotides, Phaethoquornithes and Pelecanes. We also review diagnostic apomorphies of the relevant clades, and identify known synonyms and homonyms. By establishing a formal link between higher-level taxon names and well-supported phylogenetic hypotheses, our phylogenetic definitions will provide a solid basis for the stabilization of avian higher-level nomenclature.

References

 

Angst D, Buffetaut E, Lecuyer C, Amiot R. "Terror Birds" (Phorusrhacidae) from the Eocene of Europe imply trans-Tethys dispersal. PLoS One. 2013;8(11):e80357

 
Baker AJ, Pereira SL. Ratites and tinamous (Paleognathae). In: The TimeTree of Life (Ed. Hedges SB, Kumar, S. Oxford University Press). Pp. 412-414; 2009
 

Baker AJ, Haddrath O, McPherson JD, Cloutier A. Genomic support for a moa-tinamou clade and adaptive morphological convergence in flightless ratites. Mol Biol Evol. 2014;31:1686-1696

 

Bourdon E. Osteological evidence for sister group relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften 2005;92:586-591

 
Bock, W.J., Bühler, P., 1990. The evolution and biogeographical history of the paleognathous birds. In: 100th International DO-G Meeting. Current Topics in Avian Biology, Bonn, pp. 31–36
 
Braun EL, Cracraft J, Houde P. Resolving the avian tree of life from top to bottom: The promise and potential boundaries of the phylogenomic era. In: Kraus R (editor). Avian genomics in ecology and evolution. Springer, Cham, pp. 151-210; 2019
 

Braun EL, Kimball RT. Data types and the phylogeny of Neoaves. Birds. 2021;2:1-22. https://doi.org/10.3390/birds2010001

 

Brown JW, Rest JS, Garcia-Moreno J, Sorenson MD, Mindell DP. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology. 2008;6, 6

 

Brusatte SL, O'Connor JK, Jarvis ED. The origin and diversification of birds. Curr Biol. 2015;25:R888-898

 

Burleigh JG, Kimball RT, Braun EL. Building the avian tree of life using a large-scale, sparse supermatrix. Mol Phylogenet Evol. 2015;84:53-63

 

Cantino PD, De Queiroz K. International Code of Phylogenetic Nomenclature (PhyloCode). Boca Raton: CRC Press; 2020

 

Caspers GJ, Uit de Weerd D, Wattel J, de Jong WW. A-crystallin sequences support a Galliform-Anseriform clade. Mol Phylogenet Evol. 1997;7:185-188

 
Cellinese N, Dell C. RegNum -The international clade names repository. Available from: https://www.phyloregnum.org; 2020 (September 30, 2021)
 

Chen A, Field DJ. Phylogenetic definitions for Caprimulgimorphae (Aves) and major constituent clades under the International Code of Phylogenetic Nomenclature. Vert. Zool. 2020;70:571-585

 

Chubb, AL. New nuclear evidence for the oldest divergence among neognath birds: the phylogenetic utility of ZENK. Mol. Phylogenet Evol. 2004;30:140-151

 

Clarke JA, Mindell DP, de Queiroz K, Hanson M, Norell MA, et al. Aves. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1247-1253; 2020

 
Cloutier A. Sackton T.B. Grayson P. Clamp M. Baker A.J. Edwards S.V. Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zoneSyst. Biol.20196893795510.1093/sysbio/syz019

Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, et al. Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone. Syst Biol. 2019;68:937-955

 

Cooper A, Penny D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science. 1997;275:1109-1113

 

Cracraft J. Toward a phylogenetic classification of the recent birds of the world (Class Aves). Auk. 1981;98:681-714

 

Cracraft J. The origin and early diversification of birds. Paleobiology. 1986;12:383-399

 
Cracraft J. The major clades of birds. pp. 339-361 in Benton MJ (ed.). The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds. Systematics Association Special volume 35A, Clarendon Press, Oxford; 1988
 
Cracraft J. Avian higher-level relationships and classification: Nonpasseriforms. In: Dickinson EC, Remsen JV Jr (editors). The Howard and Moore complete checklist of the birds of the world. Fourth edition, vol. 1: Non-passerines. Aves Press, London, pp. xxi-xliii; 2013
 
Cracraft J, Mindell DP. The early history of modern birds: a comparison of molecular and morphological evidence. Pp. 389-403 in Fernholm B, Bremer K, Jornvall H (eds.). The Hierarchy of Life. Elsevier, Amsterdam; 1989
 

Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ, et al. Phylogenetic relationships among modern birds (Neornithes): towards an avian tree of life, in Cracraft J, Donoghue M (eds), Assembling the Tree of Life, pp. 468-489; 2004

 

De Queiroz K. Linnaean, rank-based, and phylogenetic nomenclature: restoring primacy to the link between names and taxa. Symb Bot Ups. 33:127-140; 2005

 
De Queiroz K, Cantino P, Gauthier J (eds). Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press; 2020
 

De Queiroz K, Gauthier J. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Zool 1990;39:307-322

 

De Queiroz K, Gauthier J. Phylogenetic taxonomy. Annu Rev Ecol Syst. 1992;23:449-480

 

De Queiroz K, Gauthier J. Toward a phylogenetic system of biological nomenclature. Trends Ecol Evol 1994;9:27-31

 
Degrange F.J. Tambussi C.P. Taglioretti M.L. Dondas A. Scaglia F. A new Mesembriornithinae (Aves, Phorusrhacidae) provides new insights into the phylogeny and sensory capabilities of terror birdsJ. Vertebr. Paleontol.201535e91265610.1080/02724634.2014.912656

Degrange FJ, Tambussi CP, Taglioretti ML, Dondas A, Scaglia F. A new Mesembriornithinae (Aves, Phorusrhacidae) provides new insights into the phylogeny and sensory capabilities of terror birds. J Vert Paleontol 2015;35:e912656

 
del Hoyo J, Elliott A, Sargatal J (eds.). Handbook of the Birds of the World. Vol. 1. Ostrich to Ducks. Lynx Edicions, Barcelona; 1992
 
del Hoyo J, Elliott A, Sargatal J (eds.). Handbook of the Birds of the World. Vol. 6. Mousebirds to hornbills. Lynx Edicions, Barcelona; 2001
 
Dickinson EC, Remsen JV Jr. The Howard and Moore Complete Checklist of the Birds of the World (4th edition). Vol 1: Non-passerines. Aves Press, London; 2013
 
Dickinson EC, Christidis, L. The Howard and Moore Complete Checklist of the Birds of the World (4th edition). Vol 2: Passerines. Aves Press, London; 2014
 

Elzanowski A. Cretaceous birds and avian phylogeny. Courier Forschungsinst Senckenb. 1995;181:37-53

 
Ericson P.G.P. Evolution of terrestrial birds in three continents: biogeography and parallel radiationsJ. Biogeogr.20123981382410.1111/j.1365-2699.2011.02650.x

Ericson PGP. Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J Biogeogr. 2012;39:813-824

 
Ericson P.G.P. Anderson C.L. Britton T. Elzanowski A. Johansson U.S. Källersjö M. Diversification of Neoaves: integration of molecular sequence data and fossilsBiol. Lett.2006254354710.1098/rsbl.2006.0523

Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett. 2006;2:543-547

 

Fain MG, Houde P. Parallel radiations in the primary clades of birds. Evolution. 2004;58:2558-2573

 

Feduccia A. The morphological evidence for ratite monophyly: fact or fiction. Proc Int Ornithol Congr 1985;18:184-190

 

Fjeldsa J. The systematic affinities of the sandgrouse, Pteroclididae. Vidensk Medd Dansk Naturh Foren 1976;139:179-243

 

Furbringer M. Untersuchungen zur Morphologie und Systematik der Vogel, zugleich ein Beitrag zur Anatomie der Stutzund Bewegungsorgane. Bijdr Dierk. 1888;15:1-834

 
Gadow H. Vogel. II. Systematischer Theil. In Bronn, H.G. Klassen und Ordnungen des Thier-Reichs. Leipzig: C.F. Winter Pt 4; 1893
 
García-Moreno J. Sorenson M.D. Mindell D.P. Congruent avian phylogenies inferred from mitochondrial and nuclear DNA sequencesJ. Mol. Evol.200357273710.1007/s00239-002-2443-9

Garcia-Moreno J, Sorenson MD, Mindell DP. Congruent avian phylogenies inferred from mitochondrial and nuclear DNA sequences. J Mol Evol. 2003;57:27-37

 

Garrod, AH. On certain muscles of birds and their value in the classification. Part II. Proc Zool Soc London 1874:111-123

 
Gauthier J, De Queiroz K. Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name “Aves”. In: Gauthier JA, Gall LF (eds), New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom, Yale Peabody Museum, New Haven, pp. 7-41; 2001
 

Gilbert P, Wu J, Simon MW, Sinsheimer JS, Alfaro ME. Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Mol Phylogenet Evol. 2018;126:116-128

 
Gill BJ (Convener). Checklist of the Ornithological Society of New Zealand . Checklist of the Birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington: Te Papa Press, OSNZ; 2010
 
Gill F, Donsker D, Rasmussen P (eds). IOC World Bird List (v10.2); 2020. https://www.worldbirdnames.org/new/ioc-lists/master-list-2/ [accessed 24 August 2020]
 

Gordon EL, Kimball RT, Braun EL. Protein structure, models of sequence evolution, and data type effects in phylogenetic analyses of mitochondrial data: A case study in birds. Diversity 2021;13:555

 
Grealy A. Phillips M. Miller G. Gilbert M.T.P. Rouillard J.M. Lambert D. Eggshell palaeogenomics: palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshellMol. Phylogenet. Evol.201710915116310.1016/j.ympev.2017.01.005

Grealy A, Phillips M, Miller G, Gilbert MTP, Rouillard JM, et al. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol Phylogenet Evol. 2017;109:151-163

 

Groth JG, Barrowclough GF. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol. 1999;12:115-123

 

Gussekloo SWS, Zweers GA. The paleognathous pterygoid-palatinum complex. A true character? Neth J Zool. 1999;49:29-43

 
Hackett S.J. Kimball R.T. Reddy S. Bowie R.C.K. Braun E.L. Braun M.J. A phylogenomic study of birds reveals their evolutionary historyScience20083201763176810.1126/science.1157704

Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763-1768

 

Haddrath O, Baker AJ. Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and an Early Cretaceous origin of modern birds. Proc R Soc B. 2012;279:4617-4625

 
Hansford J.P. Turvey S.T. Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world’s largest birdR. Soc. Open Sci.2018518129510.1098/rsos.181295

Hansford JP, Turvey ST. Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird. R Soc Open Sci 2018;5 (9):181295

 

Harshman J. Reweaving the tapestry: what can we learn from Sibley & Ahlquist (1990)? Auk. 1994;111:377-388

 
Harshman J. Braun E.L. Braun M.J. Huddleston C.J. Bowie R.C.K. Chojnowski J.L. Phylogenomic evidence for multiple losses of flight in ratite birdsProc. Natl. Acad. Sci. U.S.A.2008105134621346710.1073/pnas.0803242105

Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, et al. Phylogenomic evidence for multiple losses of flight in ratite birds. Proc Natl Acad Sci 2008;105:13462-13467

 

Hedges SB, Simmons MD, van Dijk MAM, Caspers GJ, de Jong WW, Sibley CG. Phylogenetic relationships of the Hoatzin, an enigmatic South American bird. Proc Natl Acad Sci USA. 1995;92:11662-11665

 
Ho C.Y.-K. Prager E.M. Wilson A.C. Osuga D.T. Feeney R.E. Penguin evolution: protein comparisons demonstrate phylogenetic relationship to flying aquatic birdsJ. Mol. Evol.1976827128210.1007/BF01731000

Ho CY-K, Prager EM, Wilson AC, Osuga DT, Feeney RE. Penguin evolution: protein comparisons demonstrate phylogenetic relationship to flying aquatic birds. J Mol Evol. 1976;8:271-282

 

Houde P. Palaeognatous birds from the early Tertiary of the northern Hemisphere. Publ Nuttall Ornithol Club. 1988;22:1-148

 

Houde P, Olson SL. Paleognatous carinate birds from the early tertiary of North America. Science 1981;214:1236-1237

 
Houde P. Olson S.L. A radiation of coly-like birds from the Eocene of North America (Aves: Sandcoleiformes new order)Nat. Hist. Mus. Los Angel. Cty. Sci. Ser.199236137160

Houde P, Olson SL. A radiation of coly-like birds from the Eocene of North America (Aves: Sandcoleiformes new order). Natural History Museum of Los Angeles County, Science Series. 1992;36:137-160

 

Houde P, Braun EL, Narula N, Minjares U, Mirarab S. Phylogenetic signal of indels and the neoavian radiation. Diversity 2019;11:108

 

Houde P, Braun EL, Zhou L. Deep-time demographic inference suggests ecological release as driver of neoavian adaptive radiation. Diversity 2020;12:164

 
Hume JP, Walters M. Extinct birds. London: Bloomsbury; 2012
 

Huxley TH. On the classification of birds; and on the taxonomic value of the modifications of certain of the cranial bones observable in that class. Proc Zool Soc London. 1867:415-472

 
ICZN. International code of zoological nomenclature. Fourth edition. London: International Trust for Zoological Nomenclature; 1999
 
Jarvis E.D. Mirarab S. Aberer A.J. Li B. Houde P. Li C. Whole-genome analyses resolve early branches in the tree of life of modern birdsScience20143461320133110.1126/science.1253451

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320-1331

 
Kimball R.T. Oliveros C.H. Wang N. White N.D. Barker F.K. Field D.J. A phylogenomic supertree of birdsDiversity20191110910.3390/d11070109

Kimball RT, Oliveros CH, Wang N, White ND, Barker FK, et al. A phylogenomic supertree of birds. Diversity. 2019;11(7), 109

 

Kimball RT, Wang N, Heimer-McGinn V, Ferguson C, Braun EL. Identifying localized biases in large datasets: A case study using the avian tree of life. Mol Phylogenet Evol. 2013;69:1021-1032

 

Kooijman SA. The comparative energetics of petrels and penguins. Ecol Model. 2020;427, 109052

 

Ksepka DT, Clarke JA. New fossil mousebird (Aves: Coliiformes) with feather preservation provides insight into the ecological diversity of an Eocene North American avifauna. Zool J Linn Soc. 2010;160:685-706

 

Ksepka DT, Phillips MJ. Avian diversification patterns across the K-Pg Boundary: influence of calibrations, datasets, and model misspecification. Ann Missouri Bot Garden. 2015;100:300-328

 
Ksepka D.T. Clarke J.A. Grande L. Stem parrots (Aves, Halcyornithidae) from the Green river formation and a combined phylogeny of pan-psittaciformesJ. Paleontol.20118583585210.1666/10-108.1

Ksepka DT, Clarke JA, Grande L. Stem parrots (Aves, Halcyornithidae) from the Green River Formation and a combined phylogeny of Pan-Psittaciformes. J Paleontol. 2011;85:835-852

 

Ksepka DT, Grande L, Mayr G. 2019. Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines. Curr Biol. 2019;29:657-663

 
Kuhl H. Frankl-Vilches C. Bakker A. Mayr G. Nikolaus G. An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of lifeMol. Biol. Evol.20213810812710.1093/molbev/msaa191

Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, et al. An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life. Mol Biol Evol. 2021;38:108-127

 

Kuramoto T, Nishihara H, Watanabe M, Okada, N. Determining the position of storks on the phylogenetic tree of waterbirds by retroposon insertion analysis. Gen Biol Evol. 2015;7:3180-3189

 

Kurochkin EN. Synopsis of mesozoic birds and early evolution of class Aves. Archaeopteryx. 1995;13:47-66

 
Liu Y. Liu S. Yeh C.F. Zhang N. Chen G. Que P. The first set of universal nuclear protein-coding loci markers for avian phylogenetic and population genetic studiesSci. Rep.201881572310.1038/s41598-018-33646-x

Liu Y, Liu S, Yeh CF, Zhang N, Chen G, Que P et al. The first set of universal nuclear protein-coding loci markers for avian phylogenetic and population genetic studies. Sci Rep. 2018;8:15723

 
Livezey B.C. A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae)Phil. Trans. Roy. Soc. Lond. B19983532077215110.1098/rstb.1998.0353

Livezey BC. A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philos Tr R Soc London B. 1998;353:2077-2151

 

Livezey BC, Zusi RL Higher-order phylogenetics of modern Aves based on comparative anatomy. Neth J Zool. 2001;51:179-205

 

Livezey BC, Zusi RL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. I. Methods and characters. Bull Carnegie Mus Nat Hist. 2006;37:1-556

 

Livezey BC, Zusi RL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc. 2007;149:1-95

 
Manegold A. 2005. Zur Phylogenie und Evolution der „Racken”-, Specht- und Sperlingsvogel („Coraciiformes”, Piciformes und Passeriformes: Aves). PhD Dissertation. Berlin
 

Marchant S, Higgins P. Handbook of Australian, New Zealand & Antarctic Birds (Vol. 1). Melbourne: Oxford University Press; 1990

 
Mayr G. Avian higher-level phylogeny: well-supported clades and what we can learn from a phylogenetic analysis of 2954 morphological charactersJ. Zool. Syst. Evol. Res.2008466372

Mayr G. Avian higher-level phylogeny: well-supported clades and what we can learn from a phylogenetic analysis of 2954 morphological characters. J Zool Syst Evol Res. 2008a;46:63-72

 
Mayr G. Phylogenetic affinities of the enigmatic avian taxon Zygodactylus based on new material from the early Oligocene of FranceJ. Syst. Palaeontol.2008633334410.1017/S1477201907002398

Mayr G. Phylogenetic affinities of the enigmatic avian taxon Zygodactylus based on new material from the early Oligocene of France. J Syst Palaeontol. 2008b;6:333-344

 
Mayr G. Paleogene Fossil Birds. Heidelberg, Springer; 2009
 
Mayr G. Metaves, Mirandornithes, Strisores and other novelties – a critical review of the higher-level phylogeny of neornithine birdsJ. Zool. Syst. Evol. Res.201149587610.1111/j.1439-0469.2010.00586.x

Mayr G. Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds. J Zool Syst Evol Res. 2011;49:58-76

 

Mayr G. Comparative morphology of the radial carpal bone of neornithine birds and the phylogenetic significance of character variation. Zoomorphology 2014;133: 425-434

 
Mayr G. A reassessment of Eocene parrotlike fossils indicates a previously undetected radiation of zygodactyl stem group representatives of passerines (Passeriformes)Zool. Scripta20154458760210.1111/zsc.12128

Mayr G. A reassessment of Eocene parrotlike fossils indicates a previously undetected radiation of zygodactyl stem group representatives of passerines (Passeriformes). Zool Scr. 2015;44:587-602

 
Mayr G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance. Chichester, Wiley-Blackwell; 2017
 

Mayr G. Hindlimb morphology of Palaeotis suggests palaeognathous affinities of the Geranoididae and other “crane-like” birds from the Eocene of the Northern Hemisphere. Acta Palaeontol Polon. 2019;64:669-678

 
Mayr G. A remarkably complete skeleton from the London Clay provides insights into the morphology and diversity of early Eocene zygodactyl near-passerine birdsJ. Syst. Palaeontol.2020181891190610.1080/14772019.2020.1862930

Mayr G. A remarkably complete skeleton from the London Clay provides insights into the morphology and diversity of early Eocene zygodactyl near-passerine birds. J Syst Palaeontol. 2020;18:1891-1906

 
Mayr G. A partial skeleton of a new species of Tynskya Mayr, 2000 (Aves, Messelasturidae) from the London Clay highlights the osteological distinctness of a poorly known early Eocene “owl/parrot mosaic”PalZ20219533735710.1007/s12542-020-00541-8

Mayr G. A partial skeleton of a new species of Tynskya Mayr, 2000 (Aves, Messelasturidae) from the London Clay highlights the osteological distinctness of a poorly known early Eocene "owl/parrot mosaic". PalZ 2021;95:337-357

 
Mayr G. Paleogene fossil birds, 2nd edition. Heidelberg, Springer; 2022
 

Mayr G, Clarke, J. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics. 2003;19:527-553

 

Mayr G, Ericson PGP. Evidence for a sister group relationship between the Madagascan mesites (Mesitornithidae) and cuckoos (Cuculidae). Senckenb Biol. 2004;84:119-135

 

Mayr G, Smith T. Phylogenetic affinities and taxonomy of the Oligocene Diomedeoididae, and the basal divergences amongst extant procellariiform birds. Zool J Linn Soc. 2012;166:854-875

 
McCormack J.E. Harvey M.G. Faircloth B.C. Crawford N.G. Glenn T.C. Brumfield R.T. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencingPLoS One20138e5484810.1371/journal.pone.0054848

McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE. 2013;8(1), e54848

 
McKitrick MC. Phylogenetic analysis of avian hindlimb musculature. Misc Publ Mus Zool Univ Michigan. 1991a;179:1-85
 

McKitrick MC. Forelimb myology of loons (Gaviiformes), with comments on the relationship of loons and tubenoses (Procellariiformes). Zool J Linn Soc. 1991b;102:115-152

 

Meise W. Verhalten der Straussartigen Vogel und Monophylie der Ratitae. Proc Int Ornithol Congr. 1963;8:115-125

 
Mindell DP. Galloanserae. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1255-1257; 2020
 

Mindell DP, Honeycutt RL. Variability in transcribed regions of ribosomal DNA and early divergences in birds. Auk. 1989;106:539-548

 

Mindell DP, Sorenson MD, Huddleston CJ, Miranda HC, Knight A, et al. Phylogenetic relationships among and within select avian orders based on mitochondrial DNA. In Mindell DP (ed.). Avian molecular evolution and systematics. San Diego: Academic Press, pp. 213-247; 1997

 
Mitchell K.J. Llamas B. Soubrier J. Rawlence N.J. Worthy T.H. Wood J. Wood J. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolutionScience201434489890010.1126/science.1251981

Mitchell KJ, Llamas B, Soubrier J, Rawlence NJ, Worthy TH, Wood J, et al. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science. 2014;344:898-900

 

Nesbitt SJ, Clarke JA. The anatomy and taxonomy of the exquisitely preserved Green River Formation (early Eocene) lithornithids (Aves) and the relationships of Lithornithidae. Bull Am Mus Nat Hist. 2016;406:1-91

 

Olson SL. The fossil record of birds. Avian Biol. 1985;8:79-238

 

Perktas U, Groth J, Barrowclough G. Phylogeography, species limits, phylogeny, and classification of the turacos (Aves: Musophagidae) based on mitochondrial and nuclear DNA sequences. Am Mus Novitat. 2020;3949:1-69

 

Phillips MJ, Gibb GC, Crimp EA, Penny D. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst Biol. 2010;59:90-107

 

Poe S, Chubb AL. Birds in a bush: five genes indicate explosive evolution of avian orders. Evolution. 2004;58:404-415

 
Prager E.M. Wilson A.C. Congruency of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birdsJ. Mol. Evol.19769455710.1007/BF01796122

Prager EM, Wilson AC. Congruency of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birds. J Mol Evol. 1976;9:45-57

 

Prager EM, Wilson AC. Phylogenetic relationships and rates of evolution in birds. Acta IOC. 1980:1209-1214

 
Prager E.M. Wilson A.C. Osuga D.T. Feeney R.E. Evolution of flightless land birds on southern continents: transferrin comparisons shows monophyletic origin of ratitesJ. Mol. Evol.1976828329410.1007/BF01731001

Prager EM, Wilson AC, Osuga DT, Feeney RE. Evolution of flightless land birds on southern continents: transferrin comparisons shows monophyletic origin of ratites. J Mol Evol. 1976;8:283-294

 
Prum R.O. Berv J.S. Dornburg A. Field D.J. Townsend J.P. Moriarty E. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencingNature201552656957310.1038/nature15697

Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569-573

 

Pycraft WP. On the morphology and phylogeny of the Palaeognathae (Ratitae and Crypturi) and Neognathae (Carinatae). Trans Zool Soc London. 1900;15:149-290

 

Pyle P. Evolutionary implications of synapomorphic wing-molt sequences among falcons (Falconiformes) and parrots (Psittaciformes). Condor 2013;115:593-602

 
Reddy S. Kimball R.T. Pandey A. Hosner P.A. Braun M.J. Hackett S.J. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon samplingSyst. Biol.20176685787910.1093/sysbio/syx041

Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst Biol. 2017;66:857-879

 
Sangster G. A name for the flamingo-grebe cladeIbis200514761261510.1111/j.1474-919x.2005.00432.x

Sangster G. A name for the flamingo-grebe clade. Ibis. 2005;147:612-615

 
Sangster G. Mirandornithes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1265-1267; 2020a
 
Sangster G. Charadriiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1269-1272; 2020b
 
Sangster G. Procellariiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1273-1276; 2020c
 
Sangster G. Strigiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1277-1280; 2020d
 
Sangster G. Psittaciformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1285-1288; 2020e
 
Sangster G. Daedalornithes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1289-1291; 2020f
 
Sangster G. Apodiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1293-1296; 2020g
 
Sangster G. Mayr G. A name for the clade formed by Procellariiformes, Sphenisciformes, Ciconiiformes, Suliformes and PelecaniformesVert. Zool.202171495310.3897/vz.71.e61728

Sangster G, Mayr G. A name for the clade formed by Procellariiformes, Sphenisciformes, Ciconiiformes, Suliformes and Pelecaniformes. Vert. Zool. 2021;71:49-53

 

Sangster G, Collinson M, Crochet P-A, Knox AG, Parkin DT, Votier SC. Taxonomic recommendations for Western Palearctic birds: ninth report. Ibis. 2013;155:898-907

 
Sclater PL. Remarks on the present state of the systema avium. Ibis. 1880;22(4):340-350, 399-411.
 
Sharpe RB. A review of recent attempts to classify birds. Proc. 2nd Int. Ornithol. Congr., Budapest; 1891
 

Sibley CG, Ahlquist JE. Phylogeny and Classification of Birds. New Haven: Yale Univ. Press; 1990

 
Sibley C.G. Ahlquist J.E. Monroe B.L. A classification of the living birds of the world based on DNA-DNA hybridization studiesAuk198810540942310.1093/auk/105.3.409

Sibley CG, Ahlquist JE, Monroe BL. A classification of the living birds of the world based on DNA-DNA hybridization studies. Auk. 1988;105:409-423

 

Simmons MP, Springer MS, Gatesy J. Gene-tree misrooting drives conflicts in phylogenomic coalescent analyses of palaeognath birds. Mol Phylogenet Evol. 2022;167:107344

 

Slack KE, Delsuc F, Mclenachan PA, Arnason U, Penny D. Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol Phylogenet Evol. 2007;42:1-13

 

Smith JV, Braun EL, Kimball RT. Ratite non-monophyly: independent evidence from 40 novel loci. Syst Biol. 2013;62:35-49

 

Smith ND. Phylogenetic analysis of Pelecaniformes (Aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies. PLoS ONE. 2010;5(10):e13354

 

Stapel SO, Leunissen JAM, Versteeg M, Wattel J, de Jong WW. Ratites as oldest offshoot of avian stem-evidence from α-crystallin A sequences. Nature 1984;311:257-259

 
Stegmann B. Über die phyletischen Beziehungen zwischen Regenpfeifervögeln, Tauben und FlughühnernJ. Ornithol.196810944144510.1007/BF01671579

Stegmann B. Uber die phyletischen Beziehungen zwischen Regenpfeifervogeln, Tauben und Flughuhnern. J Ornithol. 1968;109:441-445

 

Suh A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool Scr. 2016;45:50-62

 
Suh A. Paus M. Kiefmann M. Churakov G. Franke F.A. Brosius J. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birdsNat. Commun.2011244310.1038/ncomms1448

Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, et al. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Comm. 2011;2, 443

 

Suh A, Smeds L, Ellegren H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 2015;13(8), e1002224

 

Torres CR, Clarke JA. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proc R Soc B. 2018;285:20181540

 

Urantowka AD, Kroczak, A, Mackiewicz P. New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. BMC Genomics. 2020;21:874

 

van Tuinen M, Butvill DB, Kirsch JAW, Hedges SB. Convergence and divergence in the evolution of aquatic birds. Proc R Soc London B. 2001;268:1345-1350

 

Wang N, Braun EL, Kimball RT. Testing hypotheses about the sister group of the Passeriformes using an independent 30 locus dataset. Mol Biol Evol. 2012;29:737-750

 
Wetmore A. A classification for the birds of the worldSmithsonian Misc. Collect.1960139137

Wetmore A. A classification for the birds of the world. Smithson Misc Coll. 1960;139(11):1-37

 
Worthy TH, Holdaway RN. The lost world of the moa: prehistoric life of New Zealand. Bloomington, IN: Indiana University Press; 2002
 
Worthy T.H. Degrange F.J. Handley W.D. Lee M.S.Y. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres)R. Soc. Open Sci.2017417097510.1098/rsos.170975

Worthy TH, Degrange FJ, Handley WD, Lee MSY. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres). R Soc Open Sci. 2017;4:170975

 
Yonezawa T. Segawa T. Mori H. Campos P.F. Hongoh Y. Endo H. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratitesCurr. Biol.201727687710.1016/j.cub.2016.10.029

Yonezawa T, Segawa T, Mori H, Campos PF, Hongoh Y, et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr Biol. 2017;27:68-77

 
Yuri T. Kimball R.T. Harshman J. Bowie R.C.K. Braun M.J. Chojnowski J.L. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signalsBiology2013241944410.3390/biology2010419

Yuri T, Kimball RT, Harshman J, Bowie RCK, Braun MJ, et al. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology. 2013;2:419-444

Avian Research
Article number: 100027
Cite this article:
Sangster G, Braun EL, Johansson US, et al. Phylogenetic definitions for 25 higher-level clade names of birds. Avian Research, 2022, 13(2): 100027. https://doi.org/10.1016/j.avrs.2022.100027

1230

Views

69

Downloads

21

Crossref

18

Web of Science

18

Scopus

0

CSCD

Altmetrics

Published: 05 April 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return