AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Distribution pattern and driving factors of genetic diversity of passerine birds in the Mountains of Southwest China

Yongbin Changa,bGang Songa( )Dezhi ZhangaChenxi JiaaPing Fana,bYan Haoa,bYanzhu JiaFumin Leia,b,c( )
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
Show Author Information

Abstract

Genetic diversity is one of the three dimensions of biodiversity and fundamental to various life forms on the Earth. Understanding the distribution pattern of genetic diversity and its driving forces has been an important topic in ecology, biogeography and conservation biology since the last decade. We investigated the genetic diversity pattern of passerine birds in the Mountains of Southwest China, a global biodiversity hotspot with the highest species richness of birds in the entire Eurasia, and explored the influencing forces of environmental variables on genetic diversity. We compiled 1189 Cytochrome b sequences of 27 passerine species from 152 geographic sites, covering the range of Mountains of Southwest China and its adjoining areas. We generated genetic diversity distribution maps using a grid-cell method based on nucleotide diversity and haplotype diversity indices. We further analyzed the variation pattern of the two indices along latitudinal, longitudinal, and elevational gradients. The correlations between the two indices and environmental variables were also evaluated. The nucleotide diversity hotspots were mostly located in the southern Hengduan Mountains, while for haplotype diversity, three hotspots were detected: the southeast edge of the Qinghai-Tibetan Plateau, the southern Hengduan Mountains and the Qinling Mountains. There was no monotonic increasing or decreasing pattern in nucleotide diversity or haplotype diversity along latitudinal, longitudinal or elevational gradients except for altitudinal range. Correlation and model selection analyses detected multiple environmental variables in driving genetic diversity patterns, including temperature, precipitation, vegetation, human influence, longitude and altitude range. Similar to the pattern of species richness, the nucleotide diversity pattern of passerine birds in the Mountains of Southwest China presents a decreasing trend from southwest to northeast, while the haplotype diversity pattern is more likely decreased from west to east. Our results indicate that the distribution pattern of genetic diversity may be derived from the complex topography and diverse microclimates in the Mountains of Southwest China.

References

 

Abebe, A.F., Cai, T., Wale, M., Song, G., Fjeldså, J., Lei, F., 2019. Factors determining species richness patterns of breeding birds along an elevational gradient in the Horn of Africa region. Ecol. Evol. 9, 9609-9623.

 

Alström, P., Rasmussen, P.C., Zhao, C., Xu, J.Z., Dalvi, S., Cai, T.L., et al., 2016. Integrative taxonomy of the Plain-backed Thrush (Zoothera mollissima) complex (Aves, Turdidae) reveals cryptic species, including a new species. Avian Res. 7, 1.

 

Anderson, D.R., Burnham, K.P., White, G.C., 1998. Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies. J. Appl. Stat. 25, 263-282.

 

Cai, T.L., Fjeldså, J., Wu, Y.J., Shao, S.M., Chen, Y.H., Quan, Q., et al., 2018. What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants? J. Biogeogr. 45, 640-651.

 

Cai, T.L., Shao, S.M., Kennedy, J.D., Alström, P., Moyle, R.G., Qu, Y.H., et al., 2020. The role of evolutionary time, diversification rates and dispersal in determining the global diversity of a large radiation of passerine birds. J. Biogeogr. 47, 1612-1625.

 

Cheng, Y.L., Miller, M.J., Zhang, D.Z., Xiong, Y., Hao, Y., Jia, C.X., et al., 2021. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. Proc. Nat. Acad. Sci. 118, e2023918118.

 

Deng, T., Abbott, R.J., Li, W.Q., Sun, H., Volis, S., 2019. Genetic diversity hotspots and refugia identifid by mapping multi-plant species haplotype diversity in China. Israel J. Plant Sci. 66, 136-151.

 

Dong, F., Hung, C.M., Li, X.L., Gao, J.Y., Zhang, Q., Wu, F., et al., 2017. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna. BMC Evol. Biol. 17, 244.

 

Fan, D.M., Huang, J.H., Hu, H.L., Sun, Z.X., Cheng, S.M., Kou, Y.X., et al., 2018. Evolutionary hotspots of seed plants in subtropical China: a comparison with species diversity hotspots of woody seed plants. Front. Genet. 9, 333.

 

Fischer, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

 

Fjeldså, J., 2013. The global diversification of songbirds (Oscines) and the build-up of the Sino-Himalayan diversity hotspot. Avian Res. 4, 132-143.

 

Gratton, P., Marta, S., Bocksberger, G., Winter, M., Keil, P., Trucchi, E., et al., 2017. Which latitudinal gradients for genetic diversity? Trends Ecol. Evol. 32, 724-726.

 

He, K., Jiang, X.L., 2014. Sky islands of Southwest China. I: an overview of phylogeographic patterns. Chin. Sci. Bull. 59, 585-597.

 

He, K., Hu, N.Q., Chen, X., Li, J.T., Jiang, X.L., 2016. Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of Southwest China. Heredity 116, 23-32.

 

Heywood, V.H., Watson, R.T., 1995. Global Biodiversity Assessment. Cambridge University Press, Cambridge.

 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978.

 

Hu, Y.B., Fan, H.Z., Chen, Y.H., Chang, J., Zhan, X.J., Wu, H., et al., 2021. Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Sci. Adv. 7, eabd5725.

 

Johansson, U.S., Alström, P., Olsson, U., Ericson, P.G.P., Sundberg, P., Price, T.D., 2007. Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers. Evolution 61, 324-333.

 

Johansson, U.S., Nylinder, S., Ohlson, J.I., Tietze, D.T., 2018. Reconstruction of the late Miocene biogeographical history of tits and chickadees (Aves: Passeriformes: Paridae): a comparison between discrete area analyses and probabilistic diffusion approach. J. Biogeogr. 45, 14-25.

 

Lawrence, E.R., Fraser, D.J., 2020. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Global Ecol. Biogeogr. 29, 770-788.

 

Lei, F.M., 2012. Global endemism needs spatial integration. Science 335, 284-285.

 

Lei, F.M., Qu, Y.H., Tang, Q.Q., An, S.C., 2003. Priorities for the conservation of avian biodiversity in China based on the distribution patterns of endemic bird genera. Biodivers. Conserv. 12, 2487-2501.

 

Lei, F.M., Qu, Y.H., Song, G., Alström, P., Fjeldså, J., 2015. The potential drivers in forming avian biodiversity hotspots in the East Himalaya Mountains of Southwest China. Integr. Zool. 10, 171-181.

 

Leigh, D.M., van Rees, C.B., Millette, K.L., Breed, M.F., Schmidt, C., Bertola, L.D., et al., 2021. Opportunities and challenges of macrogenetic studies. Nat. Rev. Genet. 22, 791-807.

 

Leitwein, M., Duranton, M., Rougemont, Q., Gagnaire, P.A., Bernatchez, L., 2020. Using haplotype information for conservation genomics. Trends Ecol. Evol. 35, 245-258.

 

Li, Y.M., Wang, S.Q., Cheng, C.Y., Zhang, J.Q., Wang, S.P., Hou, X.L., et al., 2021. Latitudinal gradients in genetic diversity and natural selection at a highly adaptive gene in terrestrial mammals. Ecography 44, 206-218.

 

Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452.

 

Liu, H.T., Wang, W.J., Song, G., Qu, Y.H., Li, S.H., Fjeldså, J., et al., 2012. Interpreting the process behind endemism in China by integrating the phylogeography and ecological niche models of the Stachyridopsis ruficeps. PLoS One 7, e46761.

 

Manel, S., Guerin, P.E., Mouillot, D., Blanchet, S., Velez, L., Albouy, C., et al., 2020. Global determinants of freshwater and marine fish genetic diversity. Nat. Commun. 11, 692.

 

Martínez-Freiria, F., Velo-Anton, G., Brito, J.C., 2015. Trapped by climate: interglacial refuge and recent population expansion in the endemic Iberian adder Vipera seoanei. Divers. Distrib. 21, 331-344.

 

Millette, K.L., Fugere, V., Debyser, C., Greiner, A., Chain, F.J.J., González, A., 2019. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55-67.

 

Miraldo, A., Li, S., Borregaard, M.K., Florez-Rodriguez, A., Gopalakrishnan, S., Rizvanovic, M., et al., 2016. An Anthropocene map of genetic diversity. Science 353, 1532-1535.

 
Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brook, T.M., Gascon, C., 2011. Global Biodiversity Conservation: the Critical Role of Hotspots. Springer, Heidelberg.
 

Moran, P.A., 1950. Notes on continuous stochastic phenomena. Biometrika 37, 17-23.

 

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.

 

Nei, M., 1987. Molecular Evolutionary Genetics. Colombia University Press, New York.

 

Nei, M., Li, W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci. 76, 5269-5273.

 

Oliver, M.A., Webster, R., 1990. Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inform. Syst. 4, 313-332.

 

Pauls, S.U., Nowak, C., Balint, M., Pfenninger, M., 2013. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925-946.

 

Qu, Y.H., Ericson, P.G.P., Quan, Q., Song, G., Zhang, R.Y., Gao, B., et al., 2014. Long-term isolation and stability explain high genetic diversity in the Eastern Himalaya. Mol. Ecol. 23, 705-720.

 

Quintero, I., Jetz, W., 2018. Global elevational diversity and diversification of birds. Nature 555, 246-250.

 

Rahbek, C., Borregaard, M.K., Colwell, R.K., Dalsgaard, B., Holt, B.G., Morueta-Holme, N., et al., 2019a. Humboldt's enigma: what causes global patterns of mountain biodiversity? Science 365: 1108-1113.

 
R Core Team, 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org.
 

Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., et al., 2019b. Building mountain biodiversity: geological and evolutionary processes. Science 365: 1114-1119.

 

Rangel, T.F., Diniz, J.A.F., Bini, L.M., 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33, 46-50.

 

Reddy, S., Moyle, R.G., 2011. Systematics of the scimitar babblers (Pomatorhinus: Timaliidae): phylogeny, biogeography, and species-limits of four species complexes. Biol. J. Linn. Soc. 102, 846-869.

 

Schmidt, C., Garroway, C.J., 2021. The population genetics of urban and rural amphibians in North America. Mol. Ecol. 30, 3918-3929.

 

Smith, B.T., Seeholzer, G.F., Harvey, M.G., Cuervo, A.M., Brumfield, R.T., 2017. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073.

 

Song, G., Qu, Y.H., Yin, Z.H., Li, S.S., Liu, N.F., Lei, F.M., 2009. Phylogeography of the Alcippe morrisonia (Aves: Timaliidae): long population history beyond late Pleistocene glaciations. BMC Evol. Biol. 9, 143.

 

Song, G., Zhang, R.Y., Alström, P., Irestedt, M., Cai, T.L., Qu, Y.H., et al., 2018. Complete taxon sampling of the avian genus Pica (magpies) reveals ancient relictual populations and synchronous Late-Pleistocene demographic expansion across the Northern Hemisphere. J. Avian Biol. 49, jav-01612.

 

Taberlet, P., Zimmermann, N.E., Englisch, T., Tribsch, A., Holderegger, R., Alvarez, N., et al., 2012. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15, 1439-1448.

 

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis Version 6.0. Mol. Biol. Evol. 30, 2725-2729.

 

Tritsch, C., Martens, J., Sun, Y.H., Heim, W., Strutzenberger, P., Päckert, M., 2017. Improved sampling at the subspecies level solves a taxonomic dilemma - a case study of two enigmatic Chinese tit species (Aves, Passeriformes, Paridae, Poecile). Mol. Phylogenet. Evol. 107, 538-550.

 

van Els, P., Herrera-Alsina, L., Pigot, A.L., Etienne, R.S., 2021. Evolutionary dynamics of the elevational diversity gradient in passerine birds. Nat. Ecol. Evol. 5, 1259-1265.

 

Wan, T., Oaks, J.R., Jiang, X.L., Huang, H.T., Knowles, L.L., 2021. Differences in Quaternary co-divergence reveals community-wide diversification in the mountains of Southwest China varied among species. Proc. R. Soc. B. 288, 20202567.

 

Wang, W.J., Dai, C.Y., Mckay, B.D., Zhao, N., Li, S.H., Lei, F.M., 2013. Microsatellites underestimate genetic divergence in the Green-backed Tit (Parus monticolus). Avian Res. 4, 144-154.

 

Wei, X.Z., Bao, D.C., Meng, H.J., Jang, M.X., 2017. Pattern and drivers of species-genetic diversity correlation in natural forest tree communities across a biodiversity hotspot. J. Plant Ecol. 11, 761-770.

 
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
 

Wu, Y.J., Colwell, R.K., Rahbek, C., Zhang, C.L., Quan, Q., Wang, C.K., et al., 2013. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310-2323.

 

Wu, Y.J., DuBay, S.G., Colwell, R.K., Ran, J.H., Lei, F.M., 2017. Mobile hotspots and refugia of avian diversity in the mountains of south-west China under past and contemporary global climate change. J. Biogeogr. 44, 615-626.

 

Xu, H.G., Cao, M.C., Wang, Z., Wu, Y., Cao, Y., Wu, J., et al., 2018. Low ecological representation in the protected area network of China. Ecol. Evol. 8, 6290-6298.

 

Yu, H.B., Favre, A., Sui, X.H., Chen, Z., Qi, W., Xie, G.W., 2019. Mapping the genetic patterns of plants in the region of the Qinghai-Tibet Plateau: implications for conservation strategies. Divers. Distrib. 25, 310-324.

 

Zhang, R.Z., 1999. China Animal Geography. Science Press, Beijing.

 

Zhao, M., Chang, Y.B., Kimball, R.T., Zhao, J., Lei, F.M., Qu, Y.H., 2019. Pleistocene glaciation explains the disjunct distribution of the Chestnut-vented Nuthatch (Aves, Sittidae). Zool. Scr. 48, 33-45.

 

Zhu, X.J., Guan, Y.Y., Qu, Y.H., David, G., Song, G., Lei, F.M., 2018a. Elevational divergence in the great tit complex revealed by major hemoglobin genes. Curr. Zool. 64, 455-464.

 

Zhu, X.J., Guan, Y.Y., Signore, A.V., Natarajan, C., Dubay, S.G., Cheng, Y.L., et al., 2018b. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc. Nat. Acad. Sci. U.S.A. 115, 1865-1870.

Avian Research
Article number: 100043
Cite this article:
Chang Y, Song G, Zhang D, et al. Distribution pattern and driving factors of genetic diversity of passerine birds in the Mountains of Southwest China. Avian Research, 2022, 13(3): 100043. https://doi.org/10.1016/j.avrs.2022.100043

695

Views

34

Downloads

3

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 26 January 2022
Revised: 12 June 2022
Accepted: 12 June 2022
Published: 18 June 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return