AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Thermoregulatory function and sexual dimorphism of the throat sack in Helmeted Guineafowl (Numida meleagris) across Africa

Johann H. Van Niekerka( )Rodrigo Megía-Palmab,c,d,eGiovanni Forcinac,d,e
Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Pretoria, 0003, South Africa
Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, School of Pharmacy, A-2 Highway, km 33.600, 28805, Alcalá de Henares, Madrid, Spain
Universidad de Alcalá (UAH), Global Change Ecology and Evolution Research Group (GloCEE), Departamento de Ciencias de la Vida, 28805, Alcalá de Henares, Madrid, Spain
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
Show Author Information

Abstract

The responses of ground-dwelling birds to heat and cold stress encompass a variety of behavioural, physiological and even morphological mechanisms. However, the role of glabrous skin in this respect has been marginally addressed so far. The Helmeted Guineafowl (Numida meleagris) is a landfowl distributed across Sub-Saharan Africa with eight traditionally recognised extant subspecies. Among the most prominent morphological traits underlying intraspecific variability are size and pigmentation of the bare throat skin (or sack), which might be related to the different habitats and environmental conditions across its wide range. In order to explore the Helmeted Guineafowl range-wide sack variation and pigmentation in relation to thermoregulation and sexual signalling, we collected morphometric and environmental information for N. m. coronata integrating field data with the inspection of photographic material encompassing seven subspecies and environmental information from their habitats. Field data evidenced that sack size was significantly correlated with ambient temperature, thus pointing to a likely involvement of the throat sack in thermoregulation. When the pictorial data from all subspecies were pooled, sack size correlated negatively with biomass, rainfall and humidity, while a positive correlation was found with annual solar irradiation. Sack size correlated positively with monthly temperature variation among the blue-throated subspecies from southern Africa as opposed to the black-throated subspecies ranging north to Zambia and Mozambique. Still, in this latter group the sack was often larger during winter months, possibly to maximise solar radiation absorbance. Noteworthy, sack size was related to sex dimorphism in two subspecies. Sack morphology and colour in the Helmeted Guineafowl likely modulate body temperature by evaporative cooling or heating upon needs, but in some subspecies it is also seemingly related to sexual signalling. Additional studies are needed to fully understand the multifunctionality of this important morphological feature in this species.

References

 

Balbontín, J., De Lope, F., Hermosell, I.G., Mousseau, T.A., Møller, A.P., 2011. Determinants of age-dependent change in a secondary sexual character. J. Evol. Biol. 24, 440-448. https://doi.org/10.1111/j.1420-9101.2010.02183.x.

 

Buchholz, R., 1996. Thermoregulatory role of the unfeathered head and neck in male wild turkeys. Auk 113, 310-318. https://doi.org/10.2307/4088897.

 

Carroll, J.M., Davis, C.A., Elmore, R.D., Fuhlendorf, S.D., 2015. A ground-nesting galliform's response to thermal heterogeneity: implications for ground-dwelling birds. PLoS One 10, e0143676. https://doi.org/10.1371/journal.pone.0143676.

 
Chittenden, H., Allan, D., Weiersbye, I., 2012. Roberts Geographic Variation of Southern African Birds. The John Voelcker Bird Book Fund, Cape Town.
 
Clancey, P.A., 1980. Checklist of Southern African Birds. The Southern African Ornithological Society, Pretoria.
 

Cook, T.R., Martin, R., Roberts, J., Häkkinen, H., Botha, P., Meyer, C., et al., 2020. Parenting in a warming world: thermoregulatory responses to heat stress in an endangered seabird. Conserv. Physiol. 8, coz109. https://doi.org/10.1093/conphys/coz109.

 

Cooney, C.R., Seddon, N., Tobias, J.A., 2016. Widespread correlations between climatic niche evolution and species diversification in birds. J. Anim. Ecol. 85, 869-878. https://doi.org/10.1111/1365-2656.12530.

 

Cornwallis, C.K., Dean, R., Pizzari, T., 2014. Sex-specific patterns of aging in sexual ornaments and gametes. Am. Nat. 184, E66-E78. https://doi.org/10.1086/677385.

 

Crowe, T.M., 1978. The evolution of guinea-fowl (Galliformes, Phasianidae, Numidinae) taxonomy, phylogeny, speciation and biogeography. Ann. S. Afr. Mus. 76, 43-136.

 

Crowe, T.M., 1979. Adaptive morphological variation in Helmeted Guineafowl Numida meleagris and Crested Guineafowl Guttera pucherani. Ibis 121, 313-320. https://doi.org/10.1111/j.1474-919X.1979.tb06848.x.

 

Crowe, T.M., Crowe, A.A., 1979. Anatomy of the vascular system of the heads and neck of Helmeted Guineafowl Numida meleagris. J. Zool. 188, 221-233. https://doi.org/10.1111/j.1469-7998.1979.tb03401.x.

 

Crowe, T.M., Elbin, S.B., 1987. Social behaviour of Helmeted Guineafowl Numida meleagris. S. Afr. J. Wildl. Res. 1, 55-57.

 

Crowe, T.M., Withers, P.C., 1979. Brain temperature regulation in Helmeted Guineafowl. S. Afr. J. Sci. 75, 362-365.

 

Delhey, K., 2017. Darker where cold and wet: Australian birds follow their own version of Gloger's rule. Ecography 41, 673-683. https://doi.org/10.1111/ecog.03040.

 

Eastick, D.L., Tattersall, G.J., Watson, S.J., Lesku, J.A., Robert, K.A., 2019. Cassowary casques act as thermal windows. Sci. Rep. 9, 1966. https://doi.org/10.1038/s41598-019-38780-8.

 
Eduardo, J., Bicudo, P.W., Buttemer, W.A., Chappel, M.A., Pearson, J.T., Bech, C., 2010. Ecological and Environmental Physiology of Birds. Oxford University Press, New York.
 
Fairbairn, D.J., Blanckenhorn, W.U., Szekely, T., 2008. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press, Oxford. doi: https://doi.org/10.1093/acprof:oso/9780199208784.001.0001.
 

Florez-Duquet, M., Mcdonald, R.B., 1998. Cold-induced thermoregulation and biological aging. Physiol. Rev. 78, 339-358.

 

Fernandez, M.E., Labaque, M.C., Orso, G., Marin, R.H., Kembro, J.M., 2021. Short- and long-term dynamics of the physiological and behavioral response to heat stress and thymol supplementation in Japanese quail. J. Therm. Biol. 97, 102876. https://doi.org/10.1016/j.jtherbio.2021.102876.

 

Friedman, N.R., Miller, E.T., Ball, J.R., Kasuga, H., Remeš, V., Economo, E.P., 2019. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc. R. Soc. Lond. B. 286, 20192474. https://doi.org/10.1098/rspb.2019.2474.

 

Galván, I., Palacios, D., Negro, J.J., 2017. The bare head of the Northern Bald Ibis (Geronticus eremita) fulfills a thermoregulatory function. Front. Zool. 14, 15. https://doi.org/10.1186/s12983-017-0201-5.

 

Galván, I., Rodríguez-Martínez, S., Carrascal, L.M., 2018. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540. https://doi.org/10.1111/1365-2435.13094.

 

Gerson, A.R., Smith, E.K., Smit, B., McKechnie, A.E., Wolf, B.O., 2014. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures. Physiol. Biochem. Zool. 87, 782-795. https://doi.org/10.1086/678956.

 

Grosiak, M., Koteja, P., Bauchinger, U., Sadowska, E.T., 2020. Age-related changes in the thermoregulatory properties in bank voles from a selection experiment. Front. Physiol. 11, 576304. https://doi.org/10.3389/fphys.2020.576304.

 
Hanan, N.P., Prihodko, L., Ross, C.W., Bucini, G., Tredennick, A.T., 2020. Gridded estimates of woody cover and biomass across Sub-Saharan Africa, 2000-2004. ORNL DAAC, Oak Ridge. https://doi.org/10.3334/ORNLDAAC/1777.
 

Hoops, D., Whiting, M.J., Keogh, J.S., 2022. A smaller habenula is associated with increasing intensity of sexual selection. Brain Behav. Evol. https://doi.org/10.1159/000521750.

 

Iverson, E.N.K., Karubian, J., 2017. The role of bare parts in avian signalling. Auk 134, 587-611. https://doi.org/10.1642/AUK-16-136.1.

 

Jeren, P., Jenni-Eiermann, S., McKeegan, D., McCafferty, D.J., Nage, R.G.R., 2019. Eye region surface temperature dynamics during acute stress relate to baseline glucocorticoids independently of environmental conditions. Physiol. Behav. 210, 112627. https://doi.org/10.1016/j.physbeh.2019.112627.

 

Kim, D.H., Lee, Y.K., Lee, S.D., Kim, S.H., Lee, K.W., 2021. Physiological and behavioral responses of laying hens exposed to long-term high temperature. J. Therm. Biol. 99, 103017. https://doi.org/10.1016/j.jtherbio.2021.103017.

 

Kimball, R.T., Edward, L., Braun, J., 2008. A multigene phylogeny of Galliformes supports a single origin of erectile ability in non-feathered facial traits. J. Avian Biol. 39, 438-445. https://doi.org/10.1111/j.2008.0908-8857.04270.x.

 

Kimball, R.T., St. Mary, C.M., Braun, E.L., 2011. A macroevolutionary perspective on multiple sexual traits in the Phasianidae (Galliformes). Int. J. Evol. Biol. 11, 423938. https://doi.org/10.4061/2011/423938.

 

Larochelle, J., Delson, J., Schmidt-Nielsen, K., 1982. Temperature regulation in the Black Vulture. Can. J. Zool. 60, 491-494. https://doi.org/10.1139/z82-073.

 
Little, R., 2016. Terrestrial Gamebirds and Snipes of Africa. Jacana, Cape Town.
 
Madge, S., McGowan, P., 2002. Pheasants, Partridges and Grouse. Christopher Helm, London.
 

Møller, A.P., de Lope, F., 1999. Senescence in a short-lived migratory bird: age-dependent morphology, migration, reproduction and parasitism. J. Anim. Ecol. 68, 163-171. https://doi.org/10.1046/j.1365-2656.1999.00274.x.

 

Moore, A.J., 1990. The evolution of sexual dimorphism by sexual selection: the separate effects of intrasexual selection and intersexual selection. Evolution 44, 315-331.

 
Mori, E., Mazza, G., Lovari, S., 2017. Sexual dimorphism. In: Vonk, J., Shakelford, T. (Eds. ), Encyclopedia of Animal Cognition and Behavior. Springer International Publishing, Switzerland, pp. 1-7.
 

Mota-Rojas, D., Titto, C.G., de Mira Geraldo, A., Martínez-Burnes, J., Gómez, J., Hernández-Ávalos, I., et al., 2021. Efficacy and function of feathers, hair, and glabrous skin in the thermoregulation strategies of domestic animals. Animals 11, 3472. doi.org/10.3390/ani11123472.

 

Nassar, P.N., Jackson, A.C., Carrie, D.R., 2001. Entraining the natural frequencies of running and breathing in guinea fowl (Numida meleagris). J. Exp. Biol. 204, 1641-1651.

 

Nilsson, J-A., Molokwu, M.N., Olsson, O., 2016. Body temperature regulation in hot environments. PLoS One 11, e0161481. https://doi.org/10.1371/journal.pone.0161481.

 

Nord, A., Giroud, S., 2020. Lifelong effects of thermal challenges during development in birds and mammals. Front. Physiol. 11, 419. https://doi.org/10.3389/fphys.2020.00419.

 

Pereyra, M.E., Morton, M.L., 2001. Nestling growth and thermoregulatory development in subalpine Dusky Flycatchers. Auk 118, 116-136. https://doi.org/10.1093/auk/118.1.116.

 

Pessato, A., McKechnie, A.E., Buchanan, K.L., Mariette, M.M., 2020. Vocal panting: a novel thermoregulatory mechanism for enhancing heat tolerance in a desert-adapted bird. Sci. Rep. 10, 18914. https://doi.org/10.1038/s41598-020-75909-6.

 

Playà-Montmany, N., González-Medina, E., Cabello-Vergel, J., Parejo, M., Abad-Gómez, J.M., Sanchez-Guzmán, J.M., et al., 2021. The thermoregulatory role of relative bill and leg surface areas in a Mediterranean population of Great tit (Parus major). Ecol. Evol. 11, 15936-15946. https://doi.org/10.1002/ece3.8263.

 

Prinsloo, H.C., Harley, V., Reilly, B.K., Crowe, T.M., 2005. Sex-related variation in morphology of Helmeted Guineafowl (Numida meleagris) from Riemland of the northeastern Free State, South Africa. S. Afr. J. Wildl. 35, 95-96.

 
Pyle, P., 2021. Examination of digital images from Macaulay Library to determine avian molt strategies: a case study on molts and plumages in eight species of North American hummingbirds. bioRxiv https://doi.org/10.1101/2021.02.03.429637.
 

Remeš, V., Martin, T.E., 2002. Environmental influences on the evolution of growth and developmental rates in passerines. Evolution 56, 2505-2518. https://doi.org/10.1111/j.0014-3820.2002.tb00175.x.

 

Siegfried, W.R., 1966. Growth, plumage, development and moult in Crowned Guineafowl Numida meleagris coronata Gurney. Depart. Nat. Conserv. Invest. Rep. 9, 1-52.

 

Stevens, M., Párraga, C.A., Cuthill, I.C., Partridge, J.C., Troscianko, T.S., 2007. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211-237. https://doi.org/10.1111/j.1095-8312.2007.00725.x.

 

Stettenheim, P.R., 2000. The integumentary morphology of modern birds-an overview. Am. Zool. 40, 461-477. https://doi.org/10.1668/0003-1569(2000)040[0461:TIMOMB]2.0.CO;2.

 

Stuart-Fox, D.M., Ord, T.J., 2004. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. Lond. B. 271, 2249-2255. https://doi.org/10.1098/rspb.2004.2802.

 

Stuart-Fox, D.M., Newton, E., Clusella-Trullas, S., 2017. Thermal consequences of colour and near-infrared reflectance. Phil. Trans. R. Soc. B. 372, 20160345. https://doi.org/10.1098/rstb.2016.0345.

 

Talbot, W.A., McWhorter, T.J., Gerson, A.R., McKechnie, A.E., Wolf, B.O., 2017. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents. J. Exp. Biol. 220, 3488-3498. doi. org/10.1242/jeb. 161653.

 

Tattersall, G.J., Arnaout, B., Symonds, M.R., 2017. The evolution of the avian bill as a thermoregulatory organ. Biol. Rev. 92, 1630-1656. https://doi.org/10.1111/brv.12299.

 

Van Jaarsveld, B., Bennett, N.C., Czenze, Z.J., Kemp, R., van de Ven, T.M., Cunningham, S.J., et al., 2021. How hornbills handle heat: sex-specific thermoregulation in the southern yellow-billed hornbill. J. Exp. Biol. 224, jeb232777. https://doi.org/10.1242/jeb.232777.

 

Van Niekerk, J.H., 1979. Social and breeding behaviour of the Crowned Guineafowl in the Krugersdorp Game Reserve. Ostrich 50, 188-189.

 

Van Niekerk, J.H., 1980. Some socio-biological features of Crowned Guineafowl in the Krugersdorp Game Reserve. Bokmakierie 32, 102-108.

 

Van Niekerk, J.H., 1982. Stalking and enticing guineafowl in a game reserve. Safring 11, 57-61.

 

Van Niekerk, J.H., 1983. Marking and observing Helmeted Guineafowl in the Krugersdorp Game Reserve. Safring 12, 48-53.

 

Van Niekerk, J.H., 1985. Observations on courtship in Swainson's Francolin. Bokmakierie 35, 90-92.

 

Van Niekerk, J.H., 2010. Social organization of a flock of Helmeted Guineafowl (Numida meleagris) at the Krugersdorp Game Reserve, South Africa. Chin. Birds. 1, 22-29. https://doi.org/10.5122/cbirds.2009.0004.

 

Van Niekerk, J.H., 2021. Population ecology of Red-necked Spurfowl Paternities afer in the coastal towns of the Eastern Cape province, South Africa. Ostrich 92, 32–40. https://doi.org/10.2989/00306525.2020.1794997.

 

Van Niekerk, J.H., Barendse, M., Mare, F., 2009. Behaviour of Red-necked Spurfowl Pternistis afer in the Boknes and Cannon Rock coastal resorts, Alexandria district, Eastern Cape province, South Africa. Ostrich 80, 43-47. https://doi.org/10.2989/OSTRICH.2009.80.1.6.764.

 

Van Vuuren, A.K.J., Kemp, L.V., McKechnie, A.E., 2020. The beak and unfeathered skin as heat radiators in the Southern Ground-Hornbill. J. Avian Biol. 51, e02457. https://doi.org/10.1111/jav.02457.

 

Vignal, A., Boitard, S., Thébault, N., Dayo, G.K., Yapi-Gnaore, V., Youssao Abdou Karim, I., et al., 2019. A guinea fowl genome assembly provides new evidence on evolution following domestication and selection in galliformes. Mol. Ecol. Resour. 19, 997-1014. https://doi.org/10.1111/1755-0998.13017.

 

Walsberg, G.E., 1982. Coat color, solar heat gain, and conspicuousness in the phainopepla. Auk 99, 495-502. https://doi.org/10.2307/1309169.

 

Withers, P.C., Crowe, T.M., 1980. Brain temperature fluctuation in Helmeted Guineafowl under semi-natural conditions. Condor 82, 99-100.

 
World Bank, 2019. Global Solar Atlas 2.0. Solargis.
Avian Research
Article number: 100047
Cite this article:
Van Niekerk JH, Megía-Palma R, Forcina G. Thermoregulatory function and sexual dimorphism of the throat sack in Helmeted Guineafowl (Numida meleagris) across Africa. Avian Research, 2022, 13(3): 100047. https://doi.org/10.1016/j.avrs.2022.100047

631

Views

32

Downloads

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 28 January 2022
Revised: 23 June 2022
Accepted: 24 June 2022
Published: 14 July 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return