AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Using non-destructive sampling to evaluate the population genomic status of captive Brown Eared Pheasants

Pengcheng WangaPing HuaJinping ZhangaLixia ZhangbJing Zhangc( )Zhengwang Zhangd( )
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
Taiyuan Zoo, Taiyuan, 030009, China
Beijing Zoo Management Office, Beijing Key Laboratory of Captive Wildlife Technologies of Beijing Zoo, Beijing, 100044, China
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
Show Author Information

Abstract

Evaluating the genetic status of threatened species is an essential task in conservation genetics. However, the genetic status of threatened species has been mostly evaluated through techniques that fail to estimate genetic diversity at the whole genomic level. Next generation sequencing can meet this demand, but high quality samples such as blood or muscle tissues are required. However, it is difficult to collect such samples from threatened species because sampling work may impact their health. Therefore, it is essential to design a workflow to evaluate the whole genomic status of threatened species using non-destructive sampling. Even though non-destructive sampling has been used in traditional barcoding technique, the barcoding technique cannot evaluate the whole genomic status. Brown Eared Pheasant (Crossoptilon mantchuricum) is an endangered species, with captive populations maintained in Taiyuan Zoo, China, and Europe. However, the genetic diversity, inbreeding pattern, and mutation load of these two populations are unclear. To uncover the genetic status of these two captive populations, we applied 2b-RAD technology to evaluate the genomic status of these populations using feathers as samples. The feathers could be collected by non-destructive sampling. The results indicate that the Taiyuan Zoo population has a lower genetic diversity and higher inbreeding coefficient than the European population. The Taiyuan Zoo population has lethal mutations when homozygous. The current project uses a non-destructive sampling technique to evaluate the whole genomic status of the two captive populations, providing a paradigm for conservation genetics, which will facilitate the development of conservation biology.

References

 

Barbanti, A., Torrado, H., Macpherson, E., Bargelloni, L., Franch, R., Carreras, C., et al., 2020. Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Mol. Ecol. Res. 20, 795–806.

 

Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., et al., 2011. Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57.

 
BirdLife International, 2016. Crossoptilon mantchuricum. The IUCN Red List of Threatened Species 2016: e.T22679299A92809690. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22679299A92809690.en (Accessed 6 January 2023).
 

Chen, Y., Jiang, Z., Fan, P., Ericson, P.G.P., Song, G., Luo, X., et al., 2022. The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nat. Commun. 13, 4821.

 

Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., et al., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92.

 

Cui, Z., Hui, M., Liu, Y., Song, C., Li, X., Li, Y., et al., 2015. High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis. Heredity 115, 206–215.

 

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156–2158.

 

Gao, Y., Chen, Y., Li, S., Huang, X., Hu, J., Bock, D.G., et al., 2022. Complementary genomic and epigenomic adaptation to environmental heterogeneity. Mol. Ecol. 31, 3598–3612.

 

Gu, L., Liu, Y., Que, P., Zhang, Z., 2013. Quaternary climate and environmental changes have shaped genetic differentiation in a Chinese pheasant endemic to the eastern margin of the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 67, 129–139.

 

Gu, Z., Pan, S., Lin, Z., Hu, L., Dai, X., Chang, J., et al., 2021. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264.

 

Hohenlohe, P.A., Funk, W.C., Rajora, O.P., 2021. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82.

 

Jeremie, F., Andrea, K., Eileen, S., Kayri, H., 2013. Genetics of reintroduced populations of the narrowly endemic thistle, Cirsium pitcheri (Asteraceae). Botany 91, 301–308.

 

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.

 

Lasalle, A., Cáceres, P., Montenegro, T., Araneda, C., Yáñez, J., Vizziano-Cantonnet, D., 2022. Development of a dense SNP panel for the Siberian sturgeon (Acipenser baerii) using high-depth RAD-seq. Conserv. Genet. Res. 14, 37–39.

 

Li, H., 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993.

 

Li, X., Zhu, Y., Liu, P., Zhuge, Z., Su, G., Wang, J., 2010. Assessment of genetic diversity in Chinese eared pheasant using fluorescent-AFLP markers. Mol. Phylogenet. Evol. 57, 429–433.

 

Liu, X., Xie, X., Liu, H., Nie, H., Ma, H., Li, D., et al., 2022. Population genomic evidence for genetic divergence in the Northwest Pacific Ark shell (Scapharca broughtonii). Aquac. Rep. 24, 101100.

 

Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., Chen, W-M., 2010. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873.

 

Miraldo, A., Li, S., Borregaard, M.K., Flórez-Rodríguez, A., Gopalakrishnan, S., Rizvanovic, M., et al., 2016. An Anthropocene map of genetic diversity. Science 353, 1532–1535.

 

Mueller, S.A., Prost, S., Anders, O., Breitenmoser-Würsten, C., Kleven, O., Klinga, P., et al., 2022. Genome-wide diversity loss in reintroduced Eurasian lynx populations urges immediate conservation management. Biol. Conserv. 266, 109442.

 

Nadyeina, O., Dymytrova, L., Naumovych, A., Postoyalkin, S., Werth, S., Cheenacharoen, S., et al., 2014. Microclimatic differentiation of gene pools in the Lobaria pulmonaria symbiosis in a primeval forest landscape. Mol. Ecol. 23, 5164–5178.

 

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., et al., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575.

 

Rochette, N.C., Rivera-Colón, A.G., Catchen, J.M., 2019. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754.

 

Ruden, D., Cingolani, P., Patel, V., Coon, M., Nguyen, T., Land, S., et al., 2012. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 3, 35.

 

Ruocco, M., Jahnke, M., Silva, J., Procaccini, G., Dattolo, E. 2022. 2b-RAD genotyping of the Seagrass Cymodocea nodosa along a latitudinal cline identifies candidate genes for environmental adaptation. Front. Genet. 13, 866758.

 

Schmaltz, G., Somers, C.M., Sharma, P., Quinn, J.S., 2006. Non-destructive sampling of maternal DNA from the external shell of bird eggs. Conserv. Genet. 7, 543–549.

 

Vandersteen Tymchuk, W., O’reilly, P., Bittman, J., Macdonald, D., Schulte, P., 2010. Conservation genomics of Atlantic salmon: variation in gene expression between and within regions of the Bay of Fundy. Mol. Ecol. 19, 1842–1859.

 

Wang, S., Meyer, E., McKay, J.K., Matz, M.V., 2012. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810.

 

Wang, P., Liu, Y., Liu, Y., Chang, Y., Wang, N., Zhang, Z., 2017. The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Mol. Phylogenet. Evol. 113, 1–8.

 

Wang, P., Burley, J.T., Liu, Y., Chang, J., Chen, D., Lu, Q., et al., 2020. Genomic consequences of long-term population decline in Brown Eared Pheasant. Mol. Biol. Evol. 38, 263–273.

 

Wasko, A.P., Martins, C., Oliveira, C., Foresti, F., 2003. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas 138, 161–165.

 

Xie, Q., Liu, F., Zhang, J., Li, X., Chen, T., Fang, G., et al., 2022. Development of 105 SNP markers in endangered turtle species Pelodiscus sinensis using RAD-seq. Conserv. Genet. Res. 14, 27–30.

 

Xue, Y., Prado-Martinez, J., Sudmant, P.H., Narasimhan, V., Ayub, Q., Szpak, M., et al., 2015. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245.

 

Zhang, B., Li, M., Zhang, Z., Goossens, B., Zhu, L., Zhang, S., et al., 2007. Genetic viability and population history of the giant panda, putting an end to the "Evolutionary Dead End". Mol. Biol. Evol. 24, 1801–1810.

 

Zhao, S., Zheng, P., Dong, S., Zhan, X., Wu, Q., Guo, X., et al., 2013. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71.

 

Zheng, G., 2015. Pheasants in China. Higher Education Press, Beijing.

Avian Research
Article number: 100078
Cite this article:
Wang P, Hu P, Zhang J, et al. Using non-destructive sampling to evaluate the population genomic status of captive Brown Eared Pheasants. Avian Research, 2023, 14(2): 100078. https://doi.org/10.1016/j.avrs.2023.100078

455

Views

8

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 August 2022
Revised: 28 December 2022
Accepted: 28 December 2022
Published: 13 January 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return