AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The benefits of being smaller: Consistent pattern for climate-induced range shift and morphological difference of three falconiforme species

Aichun XuaJi ZhangaQian LiaZhongqiu LibQin Zhub( )
School of Life Sciences, China Jiliang University, Hangzhou, 310018, China
Lab of Animal Behavior and Conservation, School of Life Sciences, Nanjing University, Nanjing, 210023, China
Show Author Information

Abstract

Climate exerts a dominant control over the distribution of species. Generally, species migrate to higher elevations to track thermal niches, but variations in morphological traits can result in trait-specific responses to climate change. Here we attempted to explore how three sympatrically distributed raptor species (the Upland Buzzard Buteo hemilasius, UB; the Common Kestrel, also called Eurasian ​Kestrel Falco tinnunculus, EK; and the Saker Falcon Falco cherrug, SF) would respond to climate change over time, and whether their responses would bias by different morphology. We tested the alternative hypotheses for Allen's rule for UB, EK, and SF in Qinghai Province, China, by modeling their current and future habitat suitability and confirming whether a consistent pattern exists between climate-induced range shifts and morphological differences among species. The extent of the projected distribution range within protected areas was also calculated for each species. We identified the future downward elevation shift for all the species, but with the notable northeastward shifting of the suitable climate space for UB and SF. Climate change would induce range contraction in the future, and the most acute influence is always the result of the pessimistic SSP585 scenario. No obvious pattern in climate-induced range shift was found for EK, for whom the morphological traits were significantly smaller all the time. More seriously, the ratios of highly suitable habitats being protected for our three raptor species were almost at a deficient level (below 1%). This study firstly tested the alternative hypothesis of Allen's rule among raptors in Qinghai Province unprecedently, confirmed the morphological basis for different responses to changing climate across species, and demonstrated the protection deficiency under the current protected area design. We advocate more related studies in the future to verify our findings across more taxa.

References

 

Aguirre-Liguori, J.A., Ramírez-Barahona, S., Gaut, B.S., 2021. The evolutionary genomics of species' responses to climate change. Nat. Ecol. Evol. 5, 1350-1360. https://doi.org/10.1038/s41559-021-01526-9.

 

Albrich, K., Rammer, W., Seidl, R., 2020. Climate change causes critical transitions and irreversible alterations of mountain forests. Global Change Biol. 26, 4013-4027. https://doi.org/10.1111/gcb.15118.

 
Allen, J.A., 1876. Geographical Variation Among North American Mammals: Especially in Respect to Size. Government Printing Office, Washington.
 

Anderson, A.M., Friis, C., Gratto-Trevor, C.L., Morrison, R.I.G., Smith, P.A., Nol, E., 2019. Consistent declines in wing lengths of Calidridine sandpipers suggest a rapid morphometric response to environmental change. PLoS One 14, e0213930. https://doi.org/10.1371/journal.pone.0213930.

 

Anderson, R.P., Gonzalez, I., 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with MaxEnt. Ecol. Model. 222, 27962811.

 

Araújo, M.B., Rahbek, C., 2006. How does climate change affect biodiversity? Science 313, 1396-1397. https://doi.org/10.1126/science.1131758.

 

Bascompte, J., García, M.B., Ortega, R., Rezende, E.L., Pironon, S., 2019. Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Sci. Adv. 5, eaav2539. https://doi.org/10.1126/sciadv.aav2539.

 

Bergmann, C., 1848. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3, 595-708.

 
BirdLife International, 2021a. IUCN Red List for Birds. http://www.birdlife.org.(Accessed 18 September 2021).
 
BirdLife International, Handbook of the Birds of the World, 2021a. Buteo hemilasius. The IUCN Red List of Threatened Species 2021: e. T22695967A202604414. https://doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22695967A202604414.en.
 
BirdLife International, 2021b. Species Factsheet: Falco cherrug. http://www.birdlife.org. (Accessed 18 September 2021).
 
BirdLife International, Handbook of the Birds of the World, 2021b. Falco cherrug. The IUCN Red List of Threatened Species 2021: e. T22696495A204182473. https://doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22696495A204182473.en.
 
Birdlife International, 2021c. Species Factsheet: Falco tinnunculus. http://www.birdlife.org. (Accessed 18 September 2021).
 
BirdLife International, Handbook of the Birds of the World, 2021c. Falco tinnunculus. The IUCN Red List of Threatened Species 2021: e. T22696362A206316110. https://doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22696362A206316110.en.
 

Bock, W.J., 1994. Concepts and methods in ecomorphology. J. Biosci. 19, 403-413.

 

Bowler, D.E., Hof, C., Haase, P., Kröncke, I., Schweiger, O., Adrian, R., et al., 2017. Cross-realm assessment of climate change impacts on species' abundance trends. Nat. Ecol. Evol. 1, 0067. https://doi.org/10.1038/s41559-016-0067.

 

Brown, P.T., Caldeira, K., 2017. Greater future global warming inferred from Earth's recent energy budget. Nature 552, 45-50. https://doi.org/10.1038/nature24672.

 

Brown, E.D., Williams, B.K., 2019. The potential for citizen science to produce reliable and useful information in ecology. Conserv. Biol. 33, 561-569. https://doi.org/10.1111/cobi.13223.

 

Brown, C.J., O'Connor, M.I., Poloczanska, E.S., Schoeman, D.S., Buckley, L.B., Burrows, M.T., et al., 2016. Ecological and methodological drivers of species' distribution and phenology responses to climate change. Global Change Biol. 22, 1548-1560. https://doi.org/10.1111/gcb.13184.

 

Burgas, D., Byholm, P., Parkkima, T., 2014. Raptors as surrogates of biodiversity along a landscape gradient. J. Appl. Ecol. 51, 786-794. https://doi.org/10.1111/1365-2664.12229.

 

Bustamante, J., Seoane, J., 2004. Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps. J. Biogeogr. 31, 295-306. https://doi.org/10.1046/j.0305-0270.2003.01006.x.

 

Casajus, N., Périé, C., Logan, T., Lambert, M.C., de Blois, S., Berteaux, D., 2016. An objective approach to select climate scenarios when projecting species distribution under climate change. PLoS ONE 11, e0152495. https://doi.org/10.1371/journal.pone.0152495.

 

Castro, L.C., Cetina-Heredia, P., Roughan, M., Dworjanyn, S., Thibaut, L., Chamberlain, M.A., et al., 2020. Combined mechanistic modelling predicts changes in species distribution and increased co-occurrence of a tropical urchin herbivore and a habitat-forming temperate kelp. Divers. Distrib. 26, 1211-1226. https://doi.org/10.1111/ddi.13073.

 

Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-1026. https://doi.org/10.1126/science.1206432.

 

Colwell, R.K., Brehm, G., Cardelús, C., Gilman, A.C., Longino, J.T., 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258-261. https://doi.org/10.1126/science.1162547.

 

Cooney, C.R., Bright, J.A., Capp, E.J., Chira, A.M., Hughes, E.C., Moody, C.J., et al., 2017. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344-347. https://doi.org/10.1038/nature21074.

 

Costantini, D., Dell'Omo, G., La Fata, I., Casagrande, S., 2014. Reproductive performance of Eurasian Kestrel Falco tinnunculus in an agricultural landscape with a mosaic of land uses. Ibis 156, 768-776.

 

Crase, B., Liedloff, A., Vesk, P.A., Fukuda, Y., Wintle, B.A., 2014. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Global Change Biol. 20, 2566-2579. https://doi.org/10.1111/gcb.12598.

 

Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B., Wood, S., 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783-786. https://doi.org/10.1038/35842.

 

del Río, S., Canas, R., Cano, E., Cano-Ortiz, A., Musarella, C., Pinto-Gomes, C., et al., 2021. Modelling the impacts of climate change on habitat suitability and vulnerability in deciduous forests in Spain. Ecol. Indic. 131, 108202. https://doi.org/10.1016/j.ecolind.2021.108202.

 

Du, L., Ma, M., 2013. Habit difference of Lesser kestrel and Common kestrel during breeding season. Sichuan J. Zool. 32, 766-769.

 
Dykstra, C.R., 2018. City lifestyles: behavioral ecology of urban raptors. In: Boal, C.W., Dykstra, C.R. (Eds.), Urban Raptors. Island Press, Washington, DC, pp. 18–35.
 

Elith, J., Catherine, H.G., Robert, P.A., Miroslav, D., Simon, F., Antoine, G., et al., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x.

 

Elsen, P.R., Tingley, M.W., 2015. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772-776. https://doi.org/10.1038/nclimate2656.

 

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., et al., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosic. Model Dev. 9, 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016.

 

Fan, L., Cai, T., Xiong, Y., Song, G., Lei, F., 2019. Bergmann's rule and Allen's rule in two passerine birds in China. Avian Res. 10, 34. https://doi.org/10.1186/s40657-019-0172-7.

 

Fei, S., Desprez, J.M., Potter, K.M., Jo, I., Knott, J.A., Oswalt, C.M., 2017. Divergence of species responses to climate change. Sci. Adv. 3, e1603055. https://doi.org/10.1126/sciadv.1603055.

 

Forrest, J.R.K., Cross, R., CaraDonna, P.J., 2019. Two-year bee, or not two-year bee? How voltinism is affected by temperature and season length in a high-elevation solitary bee. Am. Nat. 193, 560-574. https://doi.org/10.1086/701826.

 

Gardner, J.L., Rowley, E., de Rebeira, P., de Rebeira, A., Brouwer, L., 2017. Effects of extreme weather on two sympatric Australian passerine bird species. Philos. T. Roy. Soc. B. 372, 20160148. https://doi.org/10.1098/rstb.2016.0148.

 

Geng, R., Zhang, X., Ou, W., Sun, H., Lei, F., Gao, W., et al., 2009. Diet and prey consumption of breeding Common Kestrel (Falco tinnunculus) in Northeast China. Prog. Nat. Sci. 19, 1501-1507. https://doi.org/10.1016/j.pnsc.2009.03.011.

 

Greenberg, R., Danner, R.M., 2012. The influence of the California marine layer on bill size in a generalist songbird. Evolution 66, 3825-3835. https://doi.org/10.1111/j.1558-5646.2012.01726.x.

 

Hansen, W.D., Fitzsimmons, R., Olnes, J., Williams, A.P., 2020. An alternate vegetation type proves resilient and persists for decades following forest conversion in the north American boreal biome. J. Ecol. 109, 85-98. https://doi.org/10.1111/1365-2745.13446.

 

Harris, J.B.C., Dwi Putra, D., Gregory, S.D., Brook, B.W., Prawiradilaga, D.M., Sodhi, N.S., et al., 2014. Rapid deforestation threatens mid-elevational endemic birds but climate change is most important at higher elevations. Divers. Distrib. 20, 773-785. https://doi.org/10.1111/ddi.12180.

 

He, X., Burgess, K.S., Yang, X., Ahrends, A., Gao, L., Li, D., 2019. Upward elevation and northwest range shifts for alpine Meconopsis species in the Himalaya-Hengduan Mountains region. Ecol. Evol. 9, 4055-4064. https://doi.org/10.1002/ece3.5034.

 

Hickling, R., Roy, D.B., Hill, J.K., Fox, R., Thomas, C.D., 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450-455. https://doi.org/10.1111/j.1365-2486.2006.01116.x.

 

Hope, A.G., Malaney, J.L., Bell, K.C., Salazar-Miralles, F., Chavez, A.S., Barber, B.R., et al., 2016. Revision of widespread red squirrels (genus: Tamiasciurus) highlights the complexity of speciation within North American forests. Mol. Phylogenet. Evol. 100, 170-182. https://doi.org/10.1016/j.ympev.2016.04.014.

 

Hu, J., Jiang, Z., 2011. Climate change hastens the conservation urgency of an endangered ungulate. PLoS One 6, e22873. https://doi.org/10.1371/journal.pone.0022873.

 

Huchler, K., Schulze, C.H., Gamauf, A., Sumasgutner, P., 2020. Shifting breeding phenology in Eurasian kestrels Falco tinnunculus: effects of weather and urbanization. Front. Ecol. Evol. 8, 247.

 
IUCN, 2021. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org. (Accessed 10 December 2021).
 

Jha, R., Jha, K.K., 2021. Habitat prediction modelling for vulture conservation in Gangetic-Thar-Deccan region of India. Environ. Monit. Assess. 193, 532. https://doi.org/10.1007/s10661-021-09323-4.

 
Johnston, A., Hochachka, W.M., Strimas-Mackey, M.E., Gutierrez, V.R., Robinson, O.J., Miller, E.T., et al., 2019. Best practices for making reliable inferences from citizen science data: case study using eBird to estimate species distributions. BioRxiv 574392. https://www.biorxiv.org/content/10.1101/574392v3.
 

Kassara, C., Gangoso, L., Mellone, U., Piasevoli, G., Hadjikyriakou, T.G., Tsiopelas, N., et al., 2017. Current and future suitability of wintering grounds for a long-distance migratory raptor. Sci. Rep. 7, 8798. https://doi.org/10.1038/s41598-017-08753-w.

 

Kerr, J.T., Pindar, A., Galpern, P., Packer, L., Potts, S.G., Roberts, S.M., et al., 2015. Climate change impacts on bumblebees converge across continents. Science 349, 177-180. https://doi.org/10.1126/science.aaa7031.

 

Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., et al., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366-1379. https://doi.org/10.1111/ddi.12096.

 

Kübler, S., Kupko, S., Zeller, U., 2005. The kestrel (Falco tinnunculus L.) in Berlin: investigation of breeding biology and feeding ecology. J. Ornithol. 146, 271-278.

 

La Sorte, F.A., Jetz, W., 2012. Tracking of climatic niche boundaries under recent climate change. J. Anim. Ecol. 81, 914-925. https://doi.org/10.1111/j.1365-2656.2012.01958.x.

 

Lenoir, J., Svenning, J.C., 2015. Climate-related range shifts - a global multidimensional synthesis and new research directions. Ecography 38, 15-28. https://doi.org/10.1111/ecog.00967.

 

Lenoir, J., Gégout, J.C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N.E., et al., 2010. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295-303. https://doi.org/10.1111/j.1600-0587.2010.06279.x.

 

Lester, S.E., Ruttenberg, B.I., Gaines, S.D., Kinlan, B.P., 2007. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745-758. 10.1111/j. 1461-0248.2007.01070. x.

 

Li, R., 2019. Protecting rare and endangered species under climate change on the Qinghai Plateau, China. Ecol. Evol. 9, 427-436. https://doi.org/10.1002/ece3.4761.

 
Liu, J., Zhuang, D., Wang, J., Zhou, W., Wu, S., 2013. 1: 100000 Landuse Dataset of Qinghai Province (2000). National Tibetan Plateau Data Center. https://data.tpdc.ac.cn/en/data/a66443d9-8fdc-4723-8808-ded258dc0a8b/.
 

Liu, H., Mi, Z., Lin, L., Wang, Y., Zhang, Z., Zhang, F., et al., 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. P. Natl. Acad. Sci. 115, 4051-4056. https://doi.org/10.1073/pnas.1700299114.

 

Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., Ackerly, D.D., 2009. The velocity of climate change. Nature 462, 1052-1055. https://doi.org/10.1038/nature08649.

 

Marchetti, K., Price, T., 1989. Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biol. Rev. 64, 51-70. https://doi.org/10.1111/j.1469-185X.1989.tb00638.x.

 

Mariette, M.M., Buchanan, K.L., 2016. Prenatal acoustic communication programs offspring for high posthatching temperatures in a songbird. Science 353, 812-814. https://doi.org/10.1126/science.aaf7049.

 

Martín, B., Ferrer, M., 2013. Assessing biodiversity distribution using diurnal raptors in Andalusia, southern Spain. Ardeola 60, 15-28. https://doi.org/10.13157/arla.60.1.2012.15.

 

McMahon, K.W., Michelson, C.I., Hart, T., McCarthy, M.D., Patterson, W.P., Polito, M.J., 2019. Divergent trophic responses of sympatric penguin species to historic anthropogenic exploitation and recent climate change. P. Natl. Acad. Sci. 116, 25721-25727. 10.1073/pnas. 1913093116.

 

Miles, D.B., Ricklefs, R.E., 1984. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65, 1629-1640. https://doi.org/10.2307/1939141.

 

Morelli, F., Benedetti, Y., Jerzak, L., Kubecka, J., Delgado, J.D., 2020. Combining the potential resilience of avian communities with climate change scenarios to identify areas of conservation concern. Ecol. Indic. 116, 106509. https://doi.org/10.1016/j.ecolind.2020.106509.

 

Moritz, C., Agudo, R., 2013. The future of species under climate change: resilience or decline? Science 341, 504-508.

 

Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., et al., 2015. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Method. Ecol. Evol. 5, 1198-1205. https://doi.org/10.1111/2041-210X.12261.

 

Onley, I.R., Gardner, J.L., Symonds, M.R., 2020. Spatial and temporal variation in morphology in Australian whistlers and shrike-thrushes: is climate change causing larger appendages? Biol. J. Linn. Soc. 130, 101-113. https://doi.org/10.1093/biolinnean/blaa028.

 
Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., et al., 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.
 

Pacifici, M., Visconti, P., Butchart, S.H.M., Watson, J.E.M., Cassola, F.M., Rondinini, C., 2017. Species' traits influenced their response to recent climate change. Nat. Clim. Change 7, 205-208. https://doi.org/10.1038/nclimate3223.

 

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42. https://doi.org/10.1038/nature01286.

 

Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 12, 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x.

 

Peters, R.L., Darling, J.D.S., 1985. The greenhouse effect and nature reserves. BioScience 35, 707-717. https://doi.org/10.2307/1310052.

 

Peterson, M.L., Doak, D.F., Morris, W.F., 2019. Incorporating local adaptation into forecasts of species' distribution and abundance under climate change. Global Change Biol. 25, 775-793. https://doi.org/10.1111/gcb.14562.

 

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

 

Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J.R., et al., 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181-197. https://doi.org/10.1890/07-2153.1.

 

Piersma, T., van Gils, J.A., 2011. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour. Oxford University Press, Oxford.

 

Pigot, A.L., Tobias, J.A., 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16, 330-338. https://doi.org/10.1111/ele.12043.

 
R Core Team, 2019. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
 

Raxworthy, C.J., Pearson, R.G., Rabibisoa, N., Rakotondrazafy, A.M., Ramanamanjato, J.B., Raselimanana, A.P., et al., 2008. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biol. 14, 1703-1720. https://doi.org/10.1111/j.1365-2486.2008.01596.x.

 

Ricklefs, R.E., Travis, J., 1980. A morphological approach to the study of avian community organization. Auk 97, 321-338. https://doi.org/10.1093/auk/97.2.321.

 

Riddell, E.A., Iknayan, K.J., Wolf, B.O., Sinervo, B., Beissinger, S.R., 2019. Cooling requirements fueled the collapse of a desert bird community from climate change. P. Natl. Acad. Sci. 116, 21609-21615. https://doi.org/10.1073/pnas.1908791116.

 

Romano, A., Séchaud, R., Roulin, A., 2020. Geographical variation in bill size provides evidence for Allen's rule in a cosmopolitan raptor. Global Ecol. Biogeogr. 29, 65-75. https://doi.org/10.1111/geb.13007.

 

Ruan, L., Xu, W., Han, Y., Zhu, C., Guan, B., Xu, C., et al., 2018. Gene flow from multiple sources maintains high genetic diversity and stable population history of Common Moorhen Gallinula chloropus in China. Ibis 160, 855-869. https://doi.org/10.1111/ibi.12579.

 

Rubidge, E.M., Monahan, W.B., Parra, J.L., Cameron, S.E., Brashares, J.S., 2011. The role of climate, habitat, and species co-occurrence as drivers of change in small mammal distributions over the past century. Global Change Biol. 17, 696-708. https://doi.org/10.1111/j.1365-2486.2010.02297.x.

 

Schmid, S.F., Stöcklin, J., Hamann, E., Kesselring, H., 2017. High-elevation plants have reduced plasticity in flowering time in response to warming compared to low-elevation congeners. Basic Appl. Ecol. 21, 1-12. https://doi.org/10.1016/j.baae.2017.05.003.

 

Schröter, D., Cramer, W., Leemans, R., Prentice, I.C., Araújo, M.B., Arnell, N.W., et al., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310, 1333-1337. https://doi.org/10.1126/science.1115233.

 

Selwood, K.E., McGeoch, M.A., Mac Nally, R., 2015. The effects of climate change and land-use change on demographic rates and population viability. Biol. Rev. 90, 837-853. https://doi.org/10.1111/brv.12136.

 

Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vincent, C., MacGregor, H.E.A., et al., 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463. https://doi.org/10.1038/s41467-020-16313-6.

 

Siegel, R., Pyle, P., Thorne, J., Holguin, A., Howell, C., Stock, S., et al., 2014. Vulnerability of birds to climate change in California's Sierra Nevada. Avian Conserv. Ecol. 9, 7. https://doi.org/10.5751/ACE-00658-090107.

 

Spence, A.R., Tingley, M.W., 2020. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43, 1571-1590. https://doi.org/10.1111/ecog.05170.

 

Sumasgutner, P., Nemeth, E., Tebb, G., Krenn, H.W., Gamauf, A., 2014. Hard times in the city-attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey. Front. Zool. 11, 48.

 

Sumasgutner, P., Terraube, J., Coulon, A., Villers, A., Chakarov, N., Kruckenhauser, L., et al., 2019. Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Front. Zool. 16, 31.

 

Sundev, G., Yosef, R., Birazana, O., 2009. Brandt's vole density affects nutritional condition of Upland buzzard Buteo hemilasius on the Mongolian grassland steppe. Ornis Fenn. 86, 131-139.

 

Synes, N.W., Osborne, P.E., 2011. Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Global Ecol. Biogeogr. 20, 904-914. https://doi.org/10.1111/j.1466-8238.2010.00635.x.

 

Thuiller, W., 2007. Climate change and the ecologist. Nature 448, 550-552. https://doi.org/10.1038/448550a.

 
Tinajero, R., Barragan, F., Chapa-Vargas, L., 2017. Raptor functional diversity in scrubland-agricultural landscapes of northern-central-Mexican dryland environments. Trop. Conserv. Sci. 10, 1940082917712426. https://doi.org/10.1177%2F1940082917712426.
 

Tobias, J.A., Sheard, C., Pigot, A.L., Devenish, A.J.M., Yang, J., Sayol, F., et al., 2022. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581-597. https://doi.org/10.1111/ele.13898.

 

Townsend Peterson, A., Papeş, M., Eaton, M., 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550-560. https://doi.org/10.1111/j.0906-7590.2007.05102.x.

 

Turner, M.G., Calder, W.J., Cumming, G.S., Hughes, T.P., Jentsch, A., LaDeau, S.L., et al., 2020. Climate change, ecosystems and abrupt change: science priorities. Philos. T. Roy. Soc. B. 375, 20190105. https://doi.org/10.1098/rstb.2019.0105.

 

Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer, L., Benito-Garzón, M., et al., 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351-1364. https://doi.org/10.1111/ele.12348.

 

van Gils, J.A., Lisovski, S., Lok, T., Meissner, W., Ożarowska, A., De Fouw, J., et al., 2016. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352, 819-821. https://doi.org/10.1126/science.aad6351.

 

van Nes, E.H., Arani, B.M., Staal, A., van der Bolt, B., Flores, B.M., Bathiany, S., et al., 2016. What do you mean, 'tipping point. Trends Ecol. Evol. 31, 902-904. https://doi.org/10.1016/j.tree.2016.09.011.

 

Vizentin-Bugoni, J., Debastiani, V.J., Bastazini, V.A., Maruyama, P.K., Sperry, J.H., 2020. Including rewiring in the estimation of the robustness of mutualistic networks. Method. Ecol. Evol. 11, 106-116. https://doi.org/10.1111/2041-210X.13306.

 

Walther, G-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., et al., 2002. Ecological responses to recent climate change. Nature 416, 389-395.

 

Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1.

 

White, A.E., 2016. Geographical barriers and dispersal propensity interact to limit range expansions of Himalayan birds. Am. Nat. 188, 99-112.

 

Williams, S.E., Shoo, L.P., Isaac, J.L., Hoffmann, A.A., Langham, G., 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, 2621-2626. https://doi.org/10.1371/journal.pbio.0060325.

 

Wu, J., 2015. Detecting and attributing the effect of climate change on the changes in the distribution of Qinghai-Tibet plateau large mammal species over the past 50 years. Mammal Res. 60, 353-364. https://doi.org/10.1007/s13364-015-0235-z.

 

Wu, T.W., Lu, Y.X., Fang, Y.J., Xin, X.G., Li, L., Li, W.P., et al., 2019. The Beijing Climate Center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosic. Model Dev. 12, 1573-1600.

 

Xia, S., Liu, P., Jiang, Z., Cheng, J., 2021. Simulation evaluation of AMO and PDO with CMIP5 and CMIP6 models in historical experiment. Adv. Earth Sci. 36, 58-68. https://doi.org/10.1002/joc.7296.

 

Xin, X.G., Wu, T.W., Zhang, J., Zhang, F., Li, W.P., Zhang, Y.W., et al., 2019. Introduction of BCC models and its participation in CMIP6. Adv. Clim. Change Res. 15, 533.

 

Xu, J., Grumbine, R.E., 2014. Building ecosystem resilience for climate change adaptation in the Asian highlands. WIREs. Clim. Change 5, 709-718. https://doi.org/10.1002/wcc.302.

 

Zhang, K., Yao, L., Meng, J., Tao, J., 2018. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634, 1326-1334. https://doi.org/10.1016/j.scitotenv.2018.04.112.

 

Zhang, J., Jiang, F., Li, G., Qin, W., Li, S., Gao, H., et al., 2019. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecol. Evol. 9, 6643-6654. https://doi.org/10.1002/ece3.5243.

 

Zhang, J., Jiang, F., Li, G., Qin, W., Wu, T., Xu, F., et al., 2021. The four antelope species on the Qinghai-Tibet plateau face habitat loss and redistribution to higher latitudes under climate change. Ecol. Indic. 123, 107337. https://doi.org/10.1016/j.ecolind.2021.107337.

 

Zhu, Q., Hobson, K.A., Zhao, Q., Zhou, Y., Damba, I., Batbayar, N., et al., 2020. Migratory connectivity of Swan Geese based on species' distribution models, feather stable isotope assignment and satellite tracking. Divers. Distrib. 26, 944-957. https://doi.org/10.1111/ddi.13077.

Avian Research
Article number: 100079
Cite this article:
Xu A, Zhang J, Li Q, et al. The benefits of being smaller: Consistent pattern for climate-induced range shift and morphological difference of three falconiforme species. Avian Research, 2023, 14(1): 100079. https://doi.org/10.1016/j.avrs.2023.100079

716

Views

13

Downloads

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 15 October 2022
Revised: 24 December 2022
Accepted: 08 January 2023
Published: 21 January 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return