AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (770 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Evolutionary relationships of mitogenomes in a recently radiated Old World avian family

Wenqing Zanga,bZhiyong Jianga,bPer G.P. EricsoncGang SongaSergei V. Drovetskid,eTakema SaitohfFumin Leia,b,gYanhua Qua,b( )
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden
Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20004, USA
Current address: U.S. Geological Survey, Eastern Ecological Science Center at Patuxent Research Refuge, Laurel, MD 20708, USA
Yamashina Institute for Ornithology, Abiko, Chiba, Japan
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
Show Author Information

Abstract

Environmentally heterogeneous mountains provide opportunities for rapid diversification and speciation. The family Prunellidae (accentors) is a group of birds comprising primarily mountain specialists that have recently radiated across the Palearctic region. This rapid diversification poses challenges to resolving their phylogeny. Herein we sequenced the complete mitogenomes and estimated the phylogeny using all 12 (including 28 individuals) currently recognized species of Prunellidae. We reconstructed the mitochondrial genome phylogeny using 13 protein-coding genes of 12 species and 2 Eurasian Tree Sparrows (Passer montanus). Phylogenetic relationships were estimated using a suite of analyses: maximum likelihood, maximum parsimony and the coalescent-based SVDquartets. Divergence times were estimated by implementing a Bayesian relaxed clock model in BEAST2. Based on the BEAST time-calibrated tree, we implemented an ancestral area reconstruction using RASP v.4.3. Our phylogenies based on the maximum likelihood, maximum parsimony and SVDquartets approaches support a clade of large-sized accentors (subgenus Laiscopus) to be sister to all other accentors with small size (subgenus Prunella). In addition, the trees also support the sister relationship of P. immaculata and P. rubeculoides ​+ ​P.atrogularis with 100% bootstrap support, but the relationships among the remaining eight species in the Prunella clade are poorly resolved. These species cluster in different positions in the three phylogenetic trees and the nodes are often poorly supported. The five nodes separating the seven species diverged simultaneously within less than half million years (i.e., between 2.71 and 3.15 million years ago), suggesting that the recent radiation is likely responsible for rampant incomplete lineage sorting and gene tree conflicts. Ancestral area reconstruction indicates a central Palearctic region origin for Prunellidae. Our study highlights that whole mitochondrial genome phylogeny can resolve major lineages within Prunellidae but is not sufficient to fully resolve the relationship among the species in the Prunella clade that almost simultaneously diversify during a short time period. Our results emphasize the challenge to reconstruct reliable phylogenetic relationship in a group of recently radiated species.

References

 

Bachtrog, D., Thornton, K., Clark, A., Andolfatto, P., 2006. Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution 60, 292-302.

 

Bernt, M., Donath, A., Juhling, F., Externbrink, F., Florentz, C., Fritzsch, G., et al., 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313-319.

 

Bouckaert, R.R., Heled, J., Kuehnert, D., Vaughan, T.G., Wu, C.H., Xie, D., et al., 2014. Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comp. Biol. 10, e1003537.

 

Chan, K.M.A., Levin, S., 2005. Leaky prezygotic isolation and porous genome: rapid introgression of maternally inherited DNA. Evolution 59, 720-729.

 

Chen, M.Y., Liang, D., Zhang, P., 2015. Selecting question-specific genes to reduce incongruence in phylogenomics: a case study of jawed vertebrate backbone phylogeny. Syst. Biol. 64, 1104-1120.

 

Chifman, J., Kubatko, L.S., 2014. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317-3324.

 

Chifman, J., Kubatko, L.S., 2015. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. J. Theor. Biol. 374, 35-47.

 

Da Silva, F.S., Cruz, A.C.R., de Almeida Medeiros, D.B., Silva, S.P., Nunes, M.R.T., Martins, L.C., et al., 2020. Mitochondrial genome sequencing and phylogeny of Haemagogus albomaculatus, Haemagogus leucocelaenus, Haemagogus spegazzinii, and Haemagogus tropicalis (Diptera: Culicidae). Sci. Rep. 10, 16948.

 

Deng, X.D., Li, J.W., Vasconcelos, P.M., Cohen, B.E., Kusky, T.M., 2014. Geochronology of the Baye Mn oxide deposit, southern Yunnan Plateau: Implications for the late Miocene to Pleistocene paleoclimatic conditions and topographic evolution. Geochim. Cosmochim. Acta 139, 227-247.

 

Drovetski, S.V., Semenov, G., Drovetskaya, S.S., Fadeev, I.V., Red’kin, Y.A., Voelker, G., 2013. Geographic mode of speciation in a mountain specialist avian family endemic to the Palearctic. Ecol. Evol. 3, 1518-1528.

 

Dickinson, E.C., 2003. The Howard & Moore Complete Checklist of the Birds, 3rd ed.Princeton University Press, Princeton.

 

Drovetski, S.V., Fadeev, I.V., Rakovic, M., Lopes, R.J., Boano, G., Pavia, M., et al., 2018. A test of the European Pleistocene refugial paradigm, using a Western Palaearctic endemic bird species. Proc. R. Soc. B 285, 20181606.

 

Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973.

 

Duchene, S., Archer, F.I., Vilstrup, J., Caballero, S., Morin, P.A., 2011. Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation. PLoS One 6, e27138.

 

Edwards, S.V., Xi, Z., Janke, A., Faircloth, B.C., McCormack, J.E., Glenn, T.C., et al., 2016. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol. Phylogenet. Evol. 94, 447-462.

 

Esquerre, D., Ramirez-Alvarez, D., Pavon-Vazquez, C.J., Troncoso-Palacios, J., Garin, C.F., Keogh, J.S., et al., 2019. Speciation across mountains: phylogenomics, species delimitation and taxonomy of the Liolaemus leopardinus clade (Squamata, Liolaemidae). Mol. Phylogenet. Evol. 139, 106524.

 

Favre, A., Packert, M., Pauls, S.U., Jahnig, S.C., Uhl, D., Michalak, I., et al., 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253.

 

Fjeldsa, J., Bowie, R.C.K., Rahbek, C., 2012. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249-265.

 

Ghalambor, C.K., Huey, R.B., Martin, P.R., Tewksbury, J.J., Wang, G., 2016. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5-17.

 
Gill, F., Donsker, D., 2016. IOC World Bird List, version 6.1. http://www.worldbirdlist.org/. (Accessed 20 December 2022).
 
Gill, F., Donsker, D., Rasmussen, P., 2022. IOC World Bird List, vol. 2. http://www.worldbirdnames.org/. (Accessed 20 December 2022).
 

Gonzalez-Castellano, I., Pons, J., Gonzalez-Ortegon, E., Martenez-Lage, A., 2020. Mitogenome phylogenetics in the genus Palaemon (Crustacea: Decapoda) sheds light on species crypticism in the rockpool shrimp P. elegans. PLoS One 15, e0237037.

 
Hatchwell, B.J., 2005. Family Prunellidae (accentors). In: Del Hoyo, J., Elliott, J., Christie, D.A. (Eds.), Handbook of the Birds of the World. Lynx Editions, Barcelona, pp. 496–513.
 

Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S., 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522.

 

Irisarri, I., Meyer, A., 2016. The identification of the closest living relative(s) of tetrapods: phylogenomic lessons for resolving short ancient internodes. Syst. Biol. 65, 1057-1075.

 

Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.

 
Kohler, T., Maselli, D., 2009. Mountains and Climate Change – from Understanding toAction. Geographica Bernesia, Bern.
 

Kreft, H., Jetz, W., 2007. Global patterns and determinants of vascular plant diversity. P. Natl. Acad. Sci. USA 104, 5925-5930.

 

Lafon, C.W., 2004. High biodiversity: an assessment of mountain biodiversity. Divers. Distrib. 10, 75-76.

 

Lerner, H.R.L., Meyer, M., James, H.F., Hofreiter, M., Fleischer, R.C., 2011. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr. Biol. 21, 1838-1844.

 

Liu, B., Alstrom, P., Olsson, U., Fjeldså, J., Quan, Q., Roselaar, K.C.S., et al., 2017. Explosive radiation and spatial expansion across the cold environments of the Old World in an avian family. Ecol. Evol. 7, 6346-6357.

 

Maddison, W.P., Knowles, L.L., 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21-30.

 

Matzke, N.J., 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242-248.

 

Matzke, N.J., 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951-970.

 

Meng, G., Li, Y., Yang, C., Liu, S., 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47, e63.

 

Miao, Y., Herrmann, M., Wu, F., Yan, X., Yang, S., 2012. What controlled Mid-Late Miocene long-term aridification in Central Asia? -Global cooling or Tibetan Plateau uplift: a review. Earth Sci. Rev. 112, 155-172.

 

Mitchell, N., Lewis, P.O., Lemmon, E.M., Lemmon, A.R., Holsinger, K.E., 2017. Anchored phylogenomics improves the resolution of evolutionary relationships in the rapid radiation of Protea L. Am. J. Bot. 104, 102-115.

 

Meyer, M., Kircher, M., 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 6, prot5448.

 

Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.

 

Oliver, J.C., 2013. Microevolutionary processes generate phylogenomic discordance at ancient divergences. Evolution 67, 1823-1830.

 

Philippe, H., Henner Brinkmann, H., Lavrov, D.V., Littlewood, D.T.J., Michael Manuel, M., Worheide, G., et al., 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602.

 

Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M., et al., 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569-573.

 
Rambaut, A., 2012. FigTree Version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/.(Accessed 10 October 2020).
 

Ruggiero, A., Hawkins, B.A., 2008. Why do mountains support so many species of birds? Ecography 31, 306-315.

 

Song, G., Zhang, R., Alstrom, P., Irestedt, M., Cai, T., Qu, Y., et al., 2018. Complete taxon sampling of the avian genus Pica (magpies) reveals ancient relictual populations and synchronous Late-Pleistocene demographic expansion across the Northern Hemisphere. J. Avian Biol. 49, e01612.

 

Song, G., Zhang, R.Y., Machado-Stredel, F., Alstrom, P., Johansson, U.S., Irestedt, M., et al., 2020. Great journey of Great Tits (Parus major group): origin, diversification, and historical demographics of a broadly-distributed bird lineage. J. Biogeogr. 47, 1585-1598.

 
Stepanyan, L.S., 2003. Conspectus of the Ornithological Fauna of Russia and AdjacentTerritories (Within the Borders of the USSR as a Historic Region). Academkniga, Moscow.
 

Svardal, H., Salzburger, W., Malinsky, M., 2021. Genetic variation and hybridization in evolutionary radiations of cichlid fishes. Annu. Rev. Anim. Biosci. 9, 55-79.

 
Swofford, D.L., 2021. PAUP* (Version PAUP* v.4.0a169). Phylogenetic Analysis UsingParsimony (*and Other Methods). http://phylosolutions.com/paup-test. (Accessed 5January 2021).
 

Tarver, J.E., dos Reis, M., Mirarab, S., Moran, R.J., Parker, S., O’Reilly, J.E., et al., 2016. The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol. Evol. 8, 330-344.

 

Wang, W., McKay, B.D., Dai, C., Zhao, N., Zhang, R., Qu, Y., et al., 2013. Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus). J. Biogeogr. 40, 1156-1169.

 

Yu, P., Zhou, L., Yang, W., Miao, L., Li, Z., Zhang, X., et al., 2021. Comparative mitogenome analyses uncover mitogenome features and phylogenetic implications of the subfamily Cobitinae. BMC Genomics 22, 50.

 

Yu, Y., Harris, A.J., Blair, C., He, X.J., 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46-49.

 

Yu, Y., Harris, A.J., He, X., 2010. S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 56, 848-850.

 

Zhang, Q., Ree, R.H., Salamin, N., Xing, Y., Silvestro, D., 2021. Fossil-informed models reveal a boreotropical origin and divergent evolutionary trajectories in the walnut family (Juglandaceae). Syst. Biol. 71, 242-258.

 

Zhang, R., Song, G., Qu, Y., Alstrom, P., Ramos, R., Xing, X., et al., 2012. Comparative phylogeography of two widespread magpies: importance of habitat of preference and breeding behavior on genetic structure in China. Mol. Phylogenet. Evol. 65, 562-572.

 

Zhao, M., Chang, Y., Kimball, R.T., Zhao, J., Lei, F., Qu, Y., 2019. Pleistocene glaciation explains the disjunct distribution of the Chestnut-vented Nuthatch (Aves, Sittidae). Zool. Scr. 48, 33-45.

 

Zhao, N., Dai, C., Wang, W., Zhang, R., Qu, Y., Lei, F., 2012. Pleistocene climate changes shaped the divergence and demography of Asian populations of the great tit Parus major: evidence from phylogeographic analysis and ecological niche models. J. Avian Biol. 43, 297-310.

Avian Research
Article number: 100097
Cite this article:
Zang W, Jiang Z, Ericson PG, et al. Evolutionary relationships of mitogenomes in a recently radiated Old World avian family. Avian Research, 2023, 14(2): 100097. https://doi.org/10.1016/j.avrs.2023.100097

443

Views

9

Downloads

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 04 February 2023
Revised: 20 March 2023
Accepted: 22 March 2023
Published: 31 March 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return