AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Migration routes and differences in migration strategies of Whooper Swans between spring and autumn

Ji-Yeon Leea,1Hyung-Kyu Namb,1Jin-Young ParkbSeung-Gu KangcNyambayar BatbayardDong-Won KimbJae-Woong HwangbOtgonbayar TsenddTseveenmyadag NatsagdorjdJugdernamjil NerguidTuvshintugs SukhbaatardWee-Haeng Hurb( )Jeong-Chil Yooa( )
The Korea Institute of Ornithology and Department of Biology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
Endangered Species Research Center, National Institute of Ecology, Yeongyang, 36351, Republic of Korea
Wildlife Sciences and Conservation Center of Mongolia, Union Building, B-701, UNESCO str., Ulaanbaatar, 14210, Mongolia

1 These two authors contributed equally to this work.

Show Author Information

Abstract

Long-distance migratory birds travel more rapidly in spring than in autumn, as they face temporal breeding constraints. However, several species travel slower in spring owing to environmental influences, such as food availability and wind conditions. GPS trackers were attached to 17 Whooper Swans (Cygnus cygnus) inhabiting northeastern Mongolia, to determine their migration routes and stopover sites in spring and autumn. Differences between spring and autumn migrations, migration-influencing parameters, and the effect of spring stopover site temperatures were analyzed. Six swans completed perfect tours between their wintering and breeding sites, and these data were used for analysis. Spring migration lasted 57 days, with 49.2 days spent at 3.7 stopover sites. Autumn migration lasted 21.5 days, with 17.5 days spent at 1.0 stopover sites. Thus, the swans traveled more rapidly in autumn than in spring. Migration distance, number of stopovers, migration speed, and straightness were important migration determinants in both spring and autumn. Migration distance, stopover duration, number of stopovers, daily travel speed, travel duration, and migration speed differed significantly between spring and autumn. During spring migration, the temperature at the current stopover sites and that at the future stopover sites displayed significant variations (t ​= ​1585.8, df ​= ​631.6, p ​ < ​0.001). These findings are critical for the conservation and management of Whooper Swans and their key habitats in East Asian regions, and the data are anticipated to make a particularly significant contribution toward developing detailed management plans for the conservation of their key habitats.

References

 

Alerstam, T., 2006. Strategies for the transition to breeding in time-selected migration. Ardea 94, 347–357.

 

Alerstam, T., Hedenström, A., Åkesson, S., 2003. Long-distance migration: evolution and determinants. Oikos 103, 247–260. https://doi.org/10.1034/j.1600-0706.2003.12559.x.

 
Alerstam, T., Lindström, Å., 1990. In: Gwinner, E. (Ed.), Optimal bird migration: the relative importance of time, energy, and safety, Bird Migration. Springer, Berlin, pp. 331–351.
 

Ao, P., Wang, X., Meng, F., Batbayar, N., Moriguchi, S., Shimada, T., et al., 2020. Migration routes and conservation status of the Whooper Swan Cygnus cygnus in East Asia. Wildfowl 6, 43–72.

 

Baker, A.J., González, P.M., Piersma, T., Niles, L.J., do Nascimento Ide, L., Atkinson, P.W., et al., 2004. Rapid population decline in red knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay. Proc. Biol. Sci. 271, 875–882. https://doi.org/10.1098/rspb.2003.2663.

 
Barton, K., Barton, M.K., 2015. Package “Mumin”. R package version 1.18. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf.
 
Bates, D., Maechler, M., Bolker, B., Walker, S., 2014. lme4: linear mixed-effects models using Eigen and S4_. R package. version 1.1-7. http://CRAN.R-project.org/packagelme4.
 

Bauer, S., Madsen, J., Klaassen, M., 2006. Intake rates, stochasticity, or onset of spring: what aspects of food availability affect spring migration patterns in Pink-footed Geese Anser brachyrhynchus? Ardea 94, 555–566. http://hdl.handle.net/10536/DRO/DU:30035108.

 

Becker, P.H., Dittmann, T., Ludwigs, J.D., Limmer, B., Ludwig, S.C., Bauch, C., et al., 2008. Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird. Proc. Natl. Acad. Sci. USA 105, 12349–12352. https://doi.org/10.1073/pnas.0804179105.

 

Beekman, J.H., Nolet, B.A., Marcel, K., 2002. Skipping swans: fuelling rates and wind conditions determine differential use of migratory stopover sites of Bewick's Swans Cygnus bewickii. Ardea 90, 437–460.

 

Benhamou, S., 2004. How to reliably estimate the tortuosity of an animal's path: straightness? J. Theor. Biol. 229, 209–220. https://doi.org/10.1016/j.jtbi.2004.03.016.

 

Boiko, D., Kamp-Persson, H., Morkŭnas, J., 2014. Breeding Whooper Swans Cygnus cygnus in the baltic states, 1973–2013: result of a 207 recolonization. Wildfowl 64, 207–216.

 

Bromley, R.G., Jarvis, R.L., 1993. The energetics of migration and reproduction of Dusky Canada Geese. Condor 95, 193–210. https://doi.org/10.2307/1369400.

 

Bruderer, B., Salewski, V., 2009. Lower annual fecundity in long-distance migrants than in less migratory birds of temperate Europe. J. Ornithol. 150, 281–286. https://doi.org/10.1007/s10336-008-0348-0.

 

Bêty, J., Giroux, J.F., Gauthier, G., 2004. Individual variation in timing of migration: causes and reproductive consequences in greater snow geese (Anser caerulescens atlanticus). Behav. Ecol. Sociobiol. 57, 1–8. https://doi.org/10.1007/s00265-004-0840-3.

 

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach, second ed. Springer-Verlag, New York.

 

Bustnes, J.O., Moe, B., Helberg, M., Phillips, R.A., 2013. Rapid long-distance migration in Norwegian Lesser Black-backed Gulls Larus fuscus fuscus along their eastern flyway. Ibis 155, 402–406. https://doi.org/10.1111/ibi.12022.

 
Champely, S., 2018. PairedData: paired data analysis. R package version 1.1.1. https://cran.r-project.org/web/packages/PairedData/index.html.
 

Choi, J., Kim, J.Y., Do, Y., Joo, G.J., 2018. Population trends of wintering whooper swan (Cygnus cygnus) in South Korea: data from the winter water-bird census program. Korean J. Ecol. Environ. 51, 365–372. https://doi.org/10.11614/KSL.2018.51.4.365.

 

Deng, X., Zhao, Q., Fang, L., Xu, Z., Wang, X., He, H., et al., 2019. Spring migration duration exceeds that of autumn migration in far East Asian greater White-fronted geese (Anser albifrons). Avian Res. 10, 19.

 

Ely, C.R., Douglas, D.C., Fowler, A.C., Babcock, C.A., Derksen, D.V., Takekawa, J.Y., 1997. Migration behavior of Tundra Swan form the Yukon-Kuskokwim Delta, Alaska. Wilson Bull. 109, 679–692.

 

Ely, C.R., Meixell, B.W., 2016. Demographic outcomes of diverse migration strategies assessed in a metapopulation of tundra swans. Mov. Ecol. 4, 10. https://doi.org/10.1186/s40462-016-0075-8.

 
Fox, J., Weisberg, S., 2011. An R Companion to Applied Regression. Sage, Thousand Oaks, CA.
 

Fransson, T., 1995. Timing and speed of migration in North and West European populations of Sylvia warblers. J. Avian Biol. 26, 39–48. https://doi.org/10.2307/3677211.

 

Higuchi, H., Sato, F., Matsui, S., Soma, M., Kanmuri, N., 1991. Satellite tracking of the migration routes of Whistling Swans Cygnus columbianus. J. Yamashina Inst. Ornithol. 23, 6–12. https://doi.org/10.3312/jyio1952.23.6.

 

Kamiya, K., Ozaki, K., 2002. Satellite tracking of Bewick's Swan migration from Lake Nakaumi, Japan. Waterbirds 25, 128–131.

 

Kear, J., 2005. Ducks, Geese and Swans: Species Accounts (Cairina to Mergus), vol. 2. Oxford University Press, Oxford.

 

Klaassen, R.H., Alerstam, T., Carlsson, P., Fox, J.W., Lindström, A., 2011. Great flights by great snipes: long and fast non-stop migration over benign habitats. Biol. Lett. 7, 833–835. https://doi.org/10.1098/rsbl.2011.0343.

 

Klaassen, R.H.G., Ens, B.J., Shamoun-Baranes, J., Exo, K.M., Bairlein, F., 2012. Migration strategy of a flight generalist, the Lesser black-backed Gull Larus fuscus. Behav. Ecol. 23, 58–68. https://doi.org/10.1093/beheco/arr150.

 

Kokko, H., 1999. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x.

 

Kölzsch, A., Müskens, G.J.D.M., Kruckenberg, H., Glazov, P., Weinzierl, R., Nolet, B.A., et al., 2016. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos 125, 1496–1507. https://doi.org/10.1111/oik.03121.

 

Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W., 2004. Applied Linear Statistical Models, fifth ed. McGraw-Hill, Chicago. Irwin.

 

Li, H., Fang, L., Wang, X., Yi, K., Cao, L., Fox, A.D., 2020. Does snowmelt constrain spring migration progression in sympatric wintering Arctic-nesting geese? Results from a Far East Asia telemetry study. Ibis 162, 548–555. https://doi.org/10.1111/ibi.12767.

 

Li, S., Meng, W., Liu, D., Yang, Q., Chen, L., Dai, Q., et al., 2018. Migratory Whooper Swans Cygnus cygnus transmit H5N1 virus between China and Mongolia: combination evidence from satellite tracking and Phylogenetics analysis. Sci. Rep. 8, 7049. https://doi.org/10.1038/s41598-018-25291-1.

 

Limiñana, R., Soutullo, A., Urios, V., Reig-Ferrer, A., 2012. Migration and wintering areas of adult Montagu's Harriers (Circus pygargus) breeding in Spain. J. Ornithol. 153, 85–93. https://doi.org/10.1007/s10336-011-0698-x.

 

Loria, D.E., Moore, F.R., 1990. Energy demands of migration on red-eyed vireos, Vireo olivaceus. Behav. Ecol. 1, 24–35. https://doi.org/10.1093/beheco/1.1.24.

 
Mabey, S.E., McCann, J., Niles, L.J., Bartlett, C., Kerlinger, P., 1993. The Migratory Songbird Coastal Corridor Final Report. Virginia Department of Environmental Quality Coastal Resources Management Program, Richmond, VA. Report No. NA90AA-HCZ839.
 

Martin, T.E., Karr, J.R., 1990. Behavioral plasticity of foraging maneuvers of migratory warblers: multiple selection periods for niches. Stud. Avian Biol. 13, 353–359.

 

Mathiasson, S., 2013. Eurasian Whooper swan Cygnus cygnus migration with particular reference to birds wintering in southern Sweden. Wildfowl 1, 201–208.

 

McNamara, J.M., Welham, R.K., Houston, A.I., 1998. The timing of migration within the context of an annual routine. J. Avian Biol. 29, 416–423. https://doi.org/10.2307/3677160.

 

Mellone, U., De La Puente, J., López-López, P., Limiñana, R., Bermejo, A., Urios, V., 2015. Seasonal differences in migration patterns of a soaring bird in relation to environmental conditions: a multi-scale approach. Behav. Ecol. Sociobiol. 69, 75–82. https://doi.org/10.1007/s00265-014-1818-4.

 

Moore, F.R., 1992. Ecophysiological and behavioral response to energy demand during migration. Acta Congr. Int. Onthil. 20, 753–760.

 
Moore, F.R., Smith, R.J., Sandberg, R., 2005. In: Greenberg, R., Marra, P. (Eds.), Stopover ecology of intercontinental migrants: en route problems and consequences for reproductive performance, Birds of Two Worlds: the Ecology and Evolution of Migration. Johns Hopkins Press, Baltimore, pp. 251–261.
 

Mosbech, A., Gilchrist, G., Merkel, F., Sonne, C., Flagstad, A., Nyegaard, H., 2006. Year-round movements of northern Common Eiders Somateria mollissima borealis breeding in Arctic Canada and West Greenland followed by satellite telemetry. Ardea 94, 651–665.

 
National Institute of Biological Resources, 2021. 2020–2021 Winter Water-Bird Census of Korea. National Institute of Biological Resources, Republic of Korea (in Korean).
 

Nilsson, C., Klaassen, R.H., Alerstam, T., 2013. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837–845. https://doi.org/10.1086/670335.

 

Nolet, B.A., 2006. Speed of spring migration of Tundra Swans Cygnus columbianus in accordance with income or capital breeding strategy? Ardea 94, 579–591.

 

Nowak, E., Berthold, P., Querner, U., 1990. Satellite tracking of migrating Bewick's swans. A European pilot study. Naturwissenschaften 77, 549–550. https://doi.org/10.1007/BF01139272.

 

Nuijten, R.J.M., Kölzsch, A., Van Gils, J.A., Hoye, B.J., Oosterbeek, K., De Vries, P.P., et al., 2014. The exception to the rule: retreating ice front makes Bewick's swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122. https://doi.org/10.1111/j.1600-048X.2013.00287.x.

 
Peterson, B.G., Carl, P., 2014. PerformanceAnalytics: econometric tools for performance and risk analysis. https://cran.r-project.org/packagePerformanceAnalytics.
 

Petrie, S.A., Wilcox, K.L., 2003. Migration chronology of eastern-population tundra swans. Can. J. Zool. 81, 861–870. https://doi.org/10.1139/z03-063.

 
R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
 

Rahn, H., Ar, A., 1974. The avian egg: incubation time and water loss. Condor 76, 147–152. https://doi.org/10.2307/1366724.

 

Rees, E.C., Cao, L., Clausen, P., Coleman, J.T., Cornely, J., Einarsson, O., et al., 2019. Conservation status of the world's swan populations, Cygnus sp. and Coscoroba sp. : a review of current trends and gaps in knowledge. Wildfowl 5, 35–72.

 

Roques, S., Henry, P.-Y., Guyot, G., Bargain, B., Cam, E., Pradel, R., 2022. When to depart from a stopover site? Time since arrival matters more than current weather conditions. Ornithology 139. https://doi.org/10.1093/ornithology/ukab057ukab057.

 

Sanz, J.J., Potti, J., Moreno, J., Merino, S., Frias, O., 2003. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Global Change Biol. 9, 461–472. https://doi.org/10.1046/j.1365-2486.2003.00575.x.

 

Shamoun-Baranes, J., Baharad, A., Alpert, P., Berthold, P., Yom-Tov, Y., Dvir, Y., et al., 2003. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. J. Avian Biol. 34, 97–104. https://doi.org/10.1034/j.1600-048X.2003.03079.x.

 

Shimada, T., Yamaguchi, N.M., Hijikata, N., Hiraoka, E., Hupp, J.W., Flint, P.L., et al., 2014. Satellite tracking of migrating Whooper Swans Cygnus cygnus wintering in Japan. Ornithol. Sci. 13, 67–75. https://doi.org/10.2326/osj.13.67.

 

Van Noordwijk, A.J.V., McCleery, R.H., Perrins, C.M., 1995. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451–458. https://doi.org/10.2307/5648.

 
Wetlands International, 2022. Water-Bird Population Estimates. http://wpe.wetlands.org/. Accessed 20 Jul 2022.
 

Yohannes, E., Biebach, H., Nikolaus, G., Pearson, D.J., 2009. Migration speeds among eleven species of long-distance migrating passerines across Europe, the desert and eastern Africa. J. Avian Biol. 40, 126–134. https://doi.org/10.1111/j.1600-048X.2008.04403.x.

Avian Research
Article number: 100113
Cite this article:
Lee J-Y, Nam H-K, Park J-Y, et al. Migration routes and differences in migration strategies of Whooper Swans between spring and autumn. Avian Research, 2023, 14(3): 100113. https://doi.org/10.1016/j.avrs.2023.100113

426

Views

7

Downloads

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 25 November 2022
Revised: 09 June 2023
Accepted: 12 June 2023
Published: 26 June 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return