AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Mongolian Lark as an indicator of taxonomic, functional and phylogenetic diversity of steppe birds

School of Life Sciences, Northeast Normal University, Changchun, 130024, China
College of Agricultural, Hulunbuir University, Hulunbuir, 021000, China
CESCO, UMR7204 MNHN-CNRS-Sorbonne Université, CP135, 43 Rue Buffon, 75005, Paris, France
Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, PL-60- 625, Poznań, Poland
Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China

1 These two authors contributed equally to this work.

Show Author Information

Abstract

Biodiversity is declining at an unprecedented rate. Many grassland species have been lost and are now of conservation concern. Identifying efficient biodiversity indicators is a key pillar of the global conservation strategy. Mongolian Lark (Melanocorypha mongolica) is a charismatic bird species abound in Mongolian steppes, and recent studies demonstrated that this species share similar habitat requirements and likely co-occur with other grassland birds. We tested the hypothesis that Mongolian Lark would make a suitable indicator for different aspects of avian biodiversity. We made a large-scale bird survey in Inner Mongolia, and classified point counts into three groups based on different taxonomic, functional, and phylogenetic biodiversity measures. We identified species indicators of each group using the indicator value (IndVal) analysis, and examined the bird compositional difference among groups. Linear models were used for studying the patterns of occurrence of Mongolian Lark in relation to various biodiversity measures. Mongolian Lark showed the highest indicator value in comparison with other potential species indicators. Bird species richness is significantly higher at sites with Mongolian Lark, and its occurrence was negatively correlated with species abundance, functional richness, Rao's quadratic entropy and phylogenetic diversity. Mongolian Lark is therefore a suitable indicator species for avian biodiversity in Mongolian steppes. It is highly distinctive in flight and usually seen singly. The widespread distribution and charismatic appearance make it easy to monitor and adequate for citizen science, and may provide useful information on the paradigm of surrogacy in conservation ecology.

References

 

Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., et al., 2011. Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57. https://doi.org/10.1038/nature09678.

 

Bibby, C.J., Burgess, N.D., Hill, D.A., Mustoe, S.H., 2000. Bird Census Techniques. Academic Press, London.

 

Botta-Dukát, Z., 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x.

 

Burgas, D., Byholm, P., Parkkima, T., 2014. Raptors as surrogates of biodiversity along a landscape gradient. J. Appl. Ecol. 51, 786–794. https://doi.org/10.1111/1365-2664.12229.

 

Cadotte, M.W., Tucker, C.M., 2017. Should environmental filtering be abandoned? Trends Ecol. Evol. 32, 429–437. https://doi.org/10.1016/j.tree.2017.03.004.

 
Caro, T., Girling, S., 2010. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species. Island Press, Washington DC.
 

Carrascal, L.M., Cayuela, L., Palomino, D., Seoane, J., 2012. What species-specific traits make a bird a better surrogate of native species richness? A test with insular avifauna. Biol. Conserv. 152, 204–211. https://doi.org/10.1016/j.biocon.2012.04.009.

 

Cowie, R.H., Bouchet, P., Fontaine, B., 2022. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663. https://doi.org/10.1111/brv.12816.

 

de Cáceres, M., Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574. https://doi.org/10.1890/08-1823.1.

 

de Cáceres, M., Legendre, P., Moretti, M., 2010. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x.

 

de Cáceres, M., Legendre, P., Wiser, S.K., Brotons, L., 2012. Using species combinations in indicator value analyses. Methods Ecol. Evol. 3, 973–982. https://doi.org/10.1111/j.2041-210X.2012.00246.x.

 

Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., Mouquet, N., 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x.

 

Díaz, S., Fargione, J., Chapin Ⅲ, F.S., Tilman, D., 2006. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277. https://doi.org/10.1371/journal.pbio.0040277.

 

Dufrene, M., Legendre, P., 1997. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:Saaist]2.0.Co;2.

 

Elliott, L.H., Johnson, D.H., 2018. The grasshopper sparrow as an indicator species in tallgrass prairies. J. Wildl. Manag. 82, 1074–1081. https://doi.org/10.1002/jwmg.21447.

 

Fleishman, E., Murphy, D.D., Brussard, P.F., 2000. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10, 569–579. https://doi.org/10.1890/1051-0761(2000)010[0569:ANMFSO]2.0.CO;2.

 

Frishkoff, L.O., Karp, D.S., M'Gonigle, L.K., Mendenhall, C.D., Zook, J., Kremen, C., et al., 2014. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343–1346. https://doi.org/10.1126/science.1254610.

 

George, S., Edward, L.B., Ulf, S.J., Rebecca, T.K., Gerald, M., Alexander, S., 2022. Phylogenetic definitions for 25 higher-level clade names of birds. Avian Res. 13, 100027. https://doi.org/10.1016/j.avrs.2022.100027.

 

Gómez, J.P., Bravo, G.A., Brumfield, R.T., Tello, J.G., Cadena, C.D., 2010. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds. J. Anim. Ecol. 79, 1181–1192. https://doi.org/10.1111/j.1365-2656.2010.01725.x.

 

Gotelli, N.J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621. https://doi.org/10.2307/177478.

 

Gregory, R.D., van Strien, A., Vorisek, P., Gmelig Meyling, A.W., Noble, D.G., Foppen, R.P., et al., 2005. Developing indicators for European birds. Philos. T. Roy. Soc. B 360, 269–288.

 

Han, Z., Zhang, L., Jiang, Y., Wang, H., Jiguet, F., 2021. Local habitat and landscape attributes shape the diversity facets of bird communities in Inner Mongolian grasslands. Avian Conserv. Ecol. 16, 3.

 

Han, X., Owens, K., Wu, X.B., Wu, J., Huang, J., 2009. The grasslands of Inner Mongolia: A special feature. Rangeland Ecol. Manag. 62, 303–304, 302.

 

Han, Z., Zhang, L., Jiang, Y., Wang, H., Jiguet, F., 2020. Unravelling species co-occurrence in a steppe bird community of Inner Mongolia: Insights for the conservation of the endangered Jankowski's Bunting. Divers. Distrib. 26, 843–852.

 

Jetz, W., Thomas, G.H., Joy, J.B., Redding, D.W., Hartmann, K., Mooers, A.O., 2014. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930. https://doi.org/10.1016/j.cub.2014.03.011.

 

Jiguet, F., Devictor, V., Julliard, R., Couvet, D., 2012. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecol. 44, 58–66. https://doi.org/10.1016/j.actao.2011.05.003.

 

Jiguet, F., Devictor, V., Ottvall, R., van Turnhout, C., van der Jeugd, H., Lindström Å., 2010. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. R. Soc. A B 277, 3601–3608.

 

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., et al., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464.

 

Kosicki, J.Z., Chylarecki, P., 2014. The Hooded Crow Corvus cornix density as a predictor of wetland bird species richness on a large geographical scale in Poland. Ecol. Indicat. 38, 50–60.

 

Lindenmayer, D., Pierson, J., Barton, P., Beger, M., Branquinho, C., Calhoun, A., et al., 2015. A new framework for selecting environmental surrogates. Sci. Total Environ. 538, 1029–1038. https://doi.org/10.1016/j.scitotenv.2015.08.056.

 

Lüdecke, D., Ben-Shachar, M.S., Patil, I., Waggoner, P., Makowski, D., 2021. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139.

 

Møller, A.P., Morelli, F., Benedetti, Y., Mousseau, T., Su, T., Zhou, B., et al., 2017. Multiple species of cuckoos are superior predictors of bird species richness in Asia. Ecosphere 8, e02003. https://doi.org/10.1002/ecs2.2003.

 

Morelli, F., Jiguet, F., Reif, J., Plexida, S., Valli, A.S., Indykiewicz, P., et al., 2015. Cuckoo and biodiversity: Testing the correlation between species occurrence and bird species richness in Europe. Biol. Conserv. 190, 123–132. https://doi.org/10.1016/j.biocon.2015.06.003.

 

Morelli, F., Møller, A.P., Nelson, E., Benedetti, Y., Liang, W., Šímová, P., et al., 2017. The common cuckoo is an effective indicator of high bird species richness in Asia and Europe. Sci. Rep. 7, 4376. https://doi.org/10.1038/s41598-017-04794-3.

 

Morelli, F., Tryjanowski, P., 2016. The dark side of the "redundancy hypothesis" and ecosystem assessment. Ecol. Complex. 28, 222–229. https://doi.org/10.1016/j.ecocom.2016.07.005.

 

Mouchet, M.A., Villéger, S., Mason, N.W.H., Mouillot, D., 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x.

 

Mouillot, D., Graham, N.A.J., Villeger, S., Mason, N.W.H., Bellwood, D.R., 2013. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177.

 

Natsukawa, H., Sergio, F., 2022. Top predators as biodiversity indicators: A meta-analysis. Ecol. Lett. 25, 2062–2075. https://doi.org/10.1111/ele.14077.

 

Nooten, S.S., Lee, R.H., Guénard, B., 2021. Evaluating the conservation value of sacred forests for ant taxonomic, functional and phylogenetic diversity in highly degraded landscapes. Biol. Conserv. 261, 109286. https://doi.org/10.1016/j.biocon.2021.109286.

 
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., et al., 2022. Package 'vegan' -community Ecology Package. R Package Version 2.6-4 2, pp. 1–295.
 

Pardo, I., Roquet, C., Lavergne, S., Olesen, J.M., Gómez, D., García, M.B., 2017. Spatial congruence between taxonomic, phylogenetic and functional hotspots: true pattern or methodological artefact? Divers. Distrib. 23, 209–220. https://doi.org/10.1111/ddi.12511.

 

Pearman, P.B., Weber, D., 2007. Common species determine richness patterns in biodiversity indicator taxa. Biol. Conserv. 138, 109–119. https://doi.org/10.1016/j.biocon.2007.04.005.

 

Péron, G., 2017. Multicontinental community phylogenetics of avian mixed-species flocks reveal the role of the stability of associations and of kleptoparasitism. Ecography 40, 1267–1273. https://doi.org/10.1111/ecog.02574.

 

Petchey, O.L., Gaston, K.J., 2002. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411. https://doi.org/10.1046/j.1461-0248.2002.00339.xde.

 

Podani, J., Schmera, D., 2006. On dendrogram-based measures of functional diversity. Oikos 115, 179–185.

 

Pollock, L.J., Thuiller, W., Jetz, W., 2017. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144. https://doi.org/10.1038/nature22368.

 

Rader, R., Bartomeus, I., Tylianakis, J.M., Laliberté, E., 2014. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917.

 

Rapacciuolo, G., Graham, C.H., Marin, J., Behm, J.E., Costa, G.C., Hedges, S.B., et al., 2019. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61. https://doi.org/10.1038/s41559-018-0744-7.

 

Rosauer, D.F., Pollock, L.J., Linke, S., Jetz, W., 2017. Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proc. R. Soc. B 284, 20170627. https://doi.org/10.1098/rspb.2017.0627.

 

Rosenberg, K.V., Dokter, A.M., Blancher, P.J., Sauer, J.R., Smith, A.C., Smith, P.A., et al., 2019. Decline of the North American avifauna. Science 366, 120–124.

 

Sattler, T., Pezzatti, G.B., Nobis, M.P., Obrist, M.K., Roth, T., Moretti, M., 2014. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity. Conserv. Biol. 28, 414–426. https://doi.org/10.1111/cobi.12213.

 

Sergio, F., Caro, T., Brown, D., Clucas, B., Hunter, J., Ketchum, J., et al., 2008. Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19. https://doi.org/10.1146/annurev.ecolsys.39.110707.173545.

 

Szymkowiak, J., Skierczyński, M., Kuczyński, L., 2014. Are buntings good indicators of agricultural intensity? Agric. Ecosyst. Environ. 188, 192–197. https://doi.org/10.1016/j.agee.2014.02.037.

 

Tobias, J.A., Sheard, C., Pigot, A.L., Devenish, A.J.M., Yang, J., Sayol, F., et al., 2022. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597. https://doi.org/10.1111/ele.13898.

 

Wang, X., Zhu, G., Ma, H., Wu, Y., Zhang, W., Zhang, Y., et al., 2022. Bird communities' responses to human-modified landscapes in the southern Anhui Mountainous Area. Avian Res 13, 100006. https://doi.org/10.1016/j.avrs.2022.100006.

 

Wiens, J.A., Hayward, G.D., Holthausen, R.S., Wisdom, M.J., 2008. Using surrogate species and groups for conservation planning and management. BioScience 58, 241–252. https://doi.org/10.1641/b580310.

 

Wu, J., Zhang, Q., Li, A., Liang, C., 2015. Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecol. 30, 1579–1598.

 

Xu, A., Zhong, M., Tang, K., Wang, X., Yang, C., Xu, H., et al., 2021. Multidimensional diversity of bird communities across spatial variation of land cover in Zoige on the eastern Qinghai-Tibetan Plateau. Avian Res. 12, 25. https://doi.org/10.1186/s40657-021-00259-4.

 

Zhao, Z., 2001. Birds of China. Jilin Science and Technology Press, Changchun.

Avian Research
Article number: 100124
Cite this article:
Han Z, Yang X, Zhao X, et al. Mongolian Lark as an indicator of taxonomic, functional and phylogenetic diversity of steppe birds. Avian Research, 2023, 14(3): 100124. https://doi.org/10.1016/j.avrs.2023.100124

458

Views

7

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 28 March 2023
Revised: 09 July 2023
Accepted: 11 July 2023
Published: 02 August 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return