AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Vultures as a model for testing molecular adaptations of dietary specialization in birds

Yanhong Chena,bLing Xiangb,cPan ChenaHuabin Zhaob,c( )
Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, China
Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
Show Author Information

Abstract

Vultures are the only obligate scavengers among extant vertebrates. They provide valuable ecological services in ecosystems through removing carcasses, thus preventing the growth of other scavenger populations and the spread of pathogens. Moreover, their specific diets expose them to various deadly pathogens, which makes them potential candidates for studying molecular adaptations required to survive this extremely specialized scavenging habit. In this review, we summarize the morphological characteristics and behavioral habits, origin and phylogeny, and molecular adaptations to scavenging in both Old and New World vultures. The two groups of vultures share a similar appearance, indicative of convergent evolution. Vultures have experienced different degrees of specialization in their sensory organs; Old World vultures depend on sight, while New World ones depend on both smell and sight. Combined fossil records and molecular data suggest that vultures evolved independently, with distinct phylogenetic positions. We also explored their adaptation to scavenging in facial and intestinal microbiomes, gastric acid secretion and immunity. Compared with the facial microbiome, the intestinal microbiome had a lower diversity, dominated by Fusobacteria and Clostridia. The phages and single invertebrate species Adineta vaga, which feeds on dead bacteria and protozoa, present in the gut suggest a possible alternative defense mechanism. Several genes involved in gastric acidic secretion (including ATP4B, SLC26A7 and SST) and immunity (including BCL6, STING, and TLRs) undergoing positive selection likely have essential roles in eliminating invasive pathogens and initiating an innate immune response. Taken together, this review presents the current research status of vultures and highlights the use of vultures as a model for exploring molecular adaptations of dietary specialization in birds. It also provides a theoretical basis for the study of the genetic mechanisms of vultures to scavenging, and contributes to the formulation of vulture conservation strategies.

References

 

Aristotle, 1902. Aristotle's History of Animals in Ten Books. Geoge Bell and Sons, London.

 

Avise, J.C., Nelson, W.S., Sibley, C.G., 1994. DNA-sequence support for a close phylogenetic relationship between some storks and New-World vultures. Proc. Natl. Acad. Sci. U.S.A. 91, 5173–5177.

 

Baino, A.A., Hopcraft, G.G.J.C., Kendall, C.J., Newton, J., Behdenna, A., Munishi, L.K., 2022. We are what we eat, plus some per mill: using stable isotopes to estimate diet composition in Gyps vultures over space and time. Ecol. Evol. 12, e8726.

 

Boone, R.B., Thirgood, S.J., Hopcraft, J.G.C., 2006. Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology 87, 1987–1994.

 

Borowitz, D., 2015. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr. Pulmonol. 50, 24–30.

 

Brown, L., Amadon, D., 1968. Eagles, Hawks, and Falcons of the World. McGraw-HillBook Co., New York.

 

Buechley, E.R., Şekercioğlu, Ç. H., 2016a. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228.

 

Buechley, E.R., Şekercioğlu, Ç. H., 2016b. Vultures. Curr. Biol. 26, 560–561.

 

Campbell, M., 2015. Vultures: Their Evolution, Ecology and Conservation. CRC Press, Boca Raton.

 

Chamberlain, C.P., Waldbauer, J.R., Fox-Dobbs, K., Newsome, S.D., Koch, P.L., Smith, D.R., et al., 2005. Pleistocene to recent dietary shifts in California condors. Proc. Natl. Acad. Sci. U.S.A. 102: 16707–16711.

 

Chung, O., Jin, S., Cho, Y.S., Lim, J., Kim, H., Jho, S., et al., 2015. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures. Genome Biol. 16, 215.

 
Clark, W.S., Christie, D.A., Marks, J.S., 2020. Indian vulture (Gyps indicus), version 1.0. In: del Hoyo, J.A., Elliott, J.A., Sargatal, J., Christie, D.A., de Juana, E. (Eds. ), Birds of the World. Cornell Lab of Ornithology, Ithaca, NY.
 

de la Lastra, J.M.P., de la Fuente, J., 2007. Molecular cloning and characterisation of the griffon vulture (Gyps fulvus) toll-like receptor 1. Dev. Comp. Immunol. 31, 511–519.

 
del Hoyo, J.A., Elliott, J.A., Sargatal, J., 1994. In: Handbook of the Birds of the World. New World Vulture to Guineafowl, Vol. 2. Lynx Edicions, Barcelona.
 

Dharmakumarsinhji, R.S., 1955. Birds of Saurashtra, India. Times of India Press, Bombay.

 

Duclos, M., Sabat, P., Newsome, S.D., Pavez, E.F., Galban-Malagon, C., Jaksic, F.M., et al., 2020. Latitudinal patterns in the diet of Andean condor (Vultur gryphus) in Chile: contrasting environments influencing feeding behavior. Sci. Total Environ. 741, 140220.

 

Ericson, P.G.P., Anderson, C.L., Britton, T., Elzanowski, A., Johansson, U.S., Kallersjo, M., et al., 2006. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547.

 
Farner, D.S., Lowery, G.H., Dalquest, W.W., 1952. Birds from the State of Veracruz, Mexico. University of Kansas Publications, Vol. 3. Museum of National History, pp. 531–649.
 

Fazili, M., Hameem, W., Charoo, S., Shansaz, U., 2021. Diet diversity and dietary overlap of two sympatric vulture species in Hirpora Wildlife Sanctuary, Kashmir. Int. J. Vet. Sci. 10, 185–190.

 

Ferguson-Lees, J., Christie, D.A., 2001. Raptors of the World. Christopher Helm, London.

 

Fox-Dobbs, K., Stidham, T.A., Bowen, G.J., Emslie, S.D., Koch, P.L., 2006. Dietary controls on extinction versus survival among avian megafauna in the late Pleistocene. Geology 34, 685–688.

 

Garrod, A.H., 1874. On certain muscles of birds and their value in classification. Proc. Zool. Soc. 42, 111–123.

 

Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L., Braun, M.J., et al., 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768.

 

Harris, R., 2013. The conservation of Accipitridae vultures of Nepal: a review. J. Threat. Taxa 5, 3603–3619.

 

Houston, D.C., 1985. Evolutionary ecology of Afrotropical and Neotropical vultures in forests. Ornithol. Monogr. 36, 856–864.

 

Houston, D.C., 1986. Scavenging efficiency of turkey vultures in tropical forest. Conder 88, 318–323.

 

Houston, D.C., 1994. Observations on Greater Yellow-Headed Vultures Cathartes Melambrotus and Other Carthartes Species as Scavengers in Forest in Venezuel. World Working Group on Birds of Prey and Pica Press, Berlin and London.

 

Houston, D.C., 2009. The role of Griffon vultures Gyps africanus and Gyps ruppellii as scavengers. J. Zool. 172, 35–46.

 

Houston, D.C., Cooper, J.E., 1975. The digestive tract of the whiteback griffon vulture and its role in disease transmission among wild ungulates. J. Wildl. Dis. 11, 306–313.

 

Ishikawa, H., Barber, G.N., 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678.

 
IUCN, 2022. The IUCN red list of threatened species. http://www.iucnredlist.org/. (Accessed 15 October 2022).
 

Janis, C.M., Damuth, J., Theodor, J.M., 2000. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proc. Natl. Acad. Sci. U.S.A. 97, 7899–7904.

 

Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., et al., 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331.

 

Johnson, J.A., Brown, J.W., Fuchs, J., Mindell, D.P., 2016. Multi-locus phylogenetic inference among New World vultures (Aves: Cathartidae). Mol. Phylogenet. Evol. 105, 193–199.

 

Johnston, R.J., Poholek, A.C., DiToro, D., Yusuf, I., Eto, D., Barnett, B., et al., 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010.

 

Karimov, T., Guliyev, G., 2017. Diet composition of four vulture species in Azerbaijan. Ardea 105, 163–168.

 

Kelly, N.E., Sparks, D.W., DeVault, T.L., Rhodes, O.E., 2007. Diet of black and turkey vultures in a forested landscape. Wilson J. Ornithol. 119, 267–270.

 

Kimball, R.T., Wang, N., Heimer-McGinn, V., Ferguson, C., Braun, E.L., 2013. Identifying localized biases in large datasets: a case study using the avian tree of life. Mol. Phylogenet. Evol. 69, 1021–1032.

 

Koch, P.L., Barnosky, A.D., 2006. Late quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250.

 

Koford, C.B., 1953. The California Condor. Gerneral Publishing Company, Toronto.

 

Konig, C., 1982. Zur systematischen stellung der Neuweltgeier (Cathartidae). J. Ornithol. 123, 259–267.

 

Kuhl, H., Frankl-Vilches, C., Bakker, A., Mayr, G., Nikolaus, G., Boerno, S.T., et al., 2021. An unbiased molecular approach using 3'-UTRs resolves the avian family-level tree of life. Mol. Biol. Evol. 38, 108–127.

 

Lemon, W.C., 1991. Foraging behavior of a guild of Neotropical vultures. Wilson Bull. 103, 698–702.

 

Lerner, H.R.L., Mindell, D.P., 2005. Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Mol. Phylogenet. Evol. 37, 327–346.

 

Ligon, J.D., 1967. Relationships of the Cathartid Vultures. University of Michigan Press, Michigan.

 
Linnaeus, C., 2017. Systema Naturae Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Laurentii Salvii, Stockholm.
 

Livezey, B.C., Zusi, R.L., 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: neornithes) based on comparative anatomy. Ⅱ. Analysis and discussion. Zool. J. Linn. Soc-Lond. 149, 1–95.

 

Lu, X., Ke, D.H., Zeng, X.H., Gong, G.H., Ci, R., 2009. Status, ecology, and conservation of the himalayan griffon Gyps himalayensis (Aves, Accipitridae) in the Tibetan plateau. Ambio 38, 166–173.

 

Ma, M., Xu, G.D., Wu, D.N., 2017. Vultures in Xinjiang. Science Press, Beijing.

 
Mateos-Hernández, L., Crespo, E., de la Fuente, J., Perez de la lastra, J., 2013. Identification of key molecules involved in the protection of vultures against pathogens and toxinsolved-in-the-protection of vultures against pathogens and toxins. In: Baptista, G.R. (Ed. ), An Integrated View of the Molecular Recognition and Toxinology - from Analytical Procedures to Biomedical Applications. InTech, Rijeka, pp. 241–266.
 

McCormack, J., Harvey, M., Faircloth, B., Crawford, N., Glenn, T., Brumfield, R., 2013. A phylogeny of birds based on over 1, 500 loci collected by target enrichment and high-throughput sequencing. PLoS One 8, e54848.

 

McCulloch, G., 2006. Lappet-faced vultures-social hunters? Vulture News 55, 10–13.

 
Mindell, D., Fuchs, J., Johnson, J., 2018. Phylogeny, taxonomy, and geographic diversity of diurnal raptors: falconiformes, Accipitriformes, and Cathartiformes. In: Sarasola, J.H., Grande, J., Negro, J. (Eds. ), Birds of Prey. Springer, Cham, pp. 3–32.
 

Mundy, P., 1982. The Comparative Biology of Southern African Vultures. Vulture Study Group, Johannesburg.

 

Mundy, P., Butchart, D., Ledger, J., Piper, S., 1992. The Vulture of Africa. Academic Press, London.

 

Nguyen, N.V., Gleeson, P.A., Courtois-Coutry, N., Caplan, M.J., Van Driel, I.R., 2004. Gastric parietal cell acid secretion in mice can be regulated independently of H+/K+ ATPase endocytosis. Gastroenterology 127, 145–154.

 

Nielsen, J., 2006. Condor: to the Brink and Back-The Life and Times of One Giant Bird. Harper Perennial, New York.

 

Nochi, T., Yuki, Y., Terahara, K., Hino, A., Kunisawa, J., Kweon, M.N., et al., 2004. Biological role of Ep-CAM in the physical interaction between epithelial cells and lymphocytes in intestinal epithelium. Clin. Immunol. 113, 326–339.

 

Ogada, D., Shaw, P., Beyers, R.L., Buij, R., Murn, C., Thiollay, J.M., et al., 2016. Another continental vulture crisis: africa's vultures collapsing toward extinction. Conserv. Lett. 9, 89–97.

 

Petrides, G.A., 1959. Competition for food between five species of East African vultures. Auk 76, 104–106.

 

Petrovic, S., Ju, X., Barone, S., Seidler, U., Alper, S.L., Lohi, H., et al., 2003. Identification of a basolateral Cl/HCO3 exchanger specific to gastric parietal cells. Am. J. Physiol-Gastr. L. 284, 1093–1103.

 

Platt, S.G., Rainwater, T.R., 2009. Noteworthy observations of foraging Turkey vultures. Wilson J. Ornithol. 121, 839–841.

 

Platt, S.G., Barrett, H.A., Ash, L., Marlin, J.A., Boylan, S.M., Rainwater, T.R., 2021. Predation on Turkey vultures (Cathartes aura): a new observation and review. J. Raptor Res. 55, 455–459.

 

Prakash, V., 1988. Indian scavenger vulture (Neophron percnopterus ginginianus) feeding on a dead White-backed Vulture (Gyps bengalensis). J. Bombay Nat. Hist. Soc. 85, 614–615.

 

Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M., et al., 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573.

 

Pyle, P., Howell, S.N.G., 1993. An aggregation of Peregrine falcons on the Mexican winter grounds. Euphonia 2, 92–94.

 
Rea, A.M., 1983. Cathartid affinities a brief overview. In: Wilbur, S.R., Jackson, J.A. (Eds. ), Book Vulture Biology and Management. University of California Press, Berkeley, pp. 26–54.
 

Roggenbuck, M., Schnell, I.B., Blom, N., Baelum, J., Bertelsen, M.F., Ponten, T.S., et al., 2014. The microbiome of New World vultures. Nat. Commun. 5, 5498.

 

Rubinstein, M.R., Wang, X., Liu, W., Hao, Y., Cai, G., Han, Y.W., 2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-Cadherin/β-Catenin signaling via its FadA adhesin. Cell Host Microbe. 14, 195–206.

 

Ruxton, G.D., Houston, D.C., 2004. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436.

 

Sarker, S.U., Sarker, N.J., 1985. Migratory Raptorial Birds of Bangladesh. International Council for Bird Preservation, Cambridge.

 
Schultz, P., 2016. Does Bush Encroachment Impact Foraging Success of the Critically Endangered Namibian Population of the Cape Vulture Gyps Coprotheres. MSc thesis. University of Cape Town, South Africa.
 

Seibold, I., Helbig, A.J., 1995. Evolutionary history of New and Old World vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Philos. T. Roy. Soc. B 350, 163–178.

 

Semova, I., Carten, J.D., Stombaugh, J., Mackey, L.C., Knight, R., Farber, S.A., et al., 2012. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe. 12, 277–288.

 

Shayegani, M., Stone, W.B., Hannett, G.E., 1984. An outbreak of botulism in waterfowl and fly larvae in New York State. J. Wildlife Dis. 20, 86–89.

 

Sibley, C.G., Ahlquist, J.E., 1990. Phylogeny and Classification of Birds: a Study in Molecular Evolution. Yale University Press, New Haven.

 

Sick, H., 1993. Birds in Brazil. Princeton University Press, Princeton.

 
Smith, D., 2014. Africa's vulture population in jeopardy following mass poisoning incidents. http://www.theguardian.com/world/2014/jun/26/vultures-africa-poison-carcasses-poachers-crisis. (Accessed 31 October 2022).
 

Song, H.Y., Rothe, M., Goeddel, D.V., 1996. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappa B activation. Proc. Natl. Acad. Sci. U.S.A. 93, 6721–6725.

 

tenOever, B.R., Sharma, S., Zou, W., Sun, Q., Grandvaux, N., Julkunen, I., et al., 2004. Activation of TBK1 and IKK epsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J. Virol. 78, 10636–10649.

 

Thomson, A., Moreau, R., 2008. Feeding habits of the palm-nut vulture Gypohierax. Ibis 99, 608–613.

 

Urantowka, A.D., Kroczak, A., Strzala, T., Zaniewicz, G., Kurkowski, M., Mackiewicz, P., 2021. Mitogenomes of Accipitriformes and Cathartiformes were subjected to ancestral and recent duplications followed by gradual degeneration. Genome Biol. Evol. 13, 193.

 

Van Immerseel, F., de Buck, J., Pasmans, F., Huyghebaert, G., Haesebrouck, F., Ducatelle, R., 2004. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol. 33, 537–549.

 

Wacher, T., Newby, J., Houdou, I., Harouna, A., Rabeil, T., 2013. Vulture observations in the Sahelian zones of Chad and Niger. Bull. ABC 20, 186–199.

 

Wallace, M.P., Temple, S.A., 1987. Competitive interactions within and between species in a guild of avian scavengers. Auk 104, 290–295.

 

Wang, K., Zhao, H.B., 2015. Birds generally carry a small repertoire of bitter taste receptor genes. Genome Biol. Evol. 7, 2705–2715.

 

Ward, J., McCafferty, D.J., Houston, D.C., Ruxton, G.D., 2008. Why do vultures have bald heads? The role of postural adjustment and bare skin areas in thermoregulation. J. Therm. Biol. 33, 168–173.

 

Wetmore, A., 1965. The role of olfaction in food location by the Turkey vulture (Cathartes aura). Auk 82, 661–662.

 

Wink, M., 1995. Phylogeny of Old and New World vultures (Aves: Accipitridae and Cathartidae) inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Z. Naturforsch. C. 50, 868–882.

 

Wink, M., Sauer-Gürth, H., 2004. Phylogenetic Relationships in Diurnal Raptors Based on Nucleotide Sequences of Mitochondrial and Nuclear Marker Genes. Raptors Worldwide WWGBP, Berlin.

 

Yamazaki, T., Takeda, K., Gotoh, K., Takeshima, H., Akira, S., Kurosaki, T., 2002. Essential immunoregulatory role for BCAP in B cell development and function. J. Exp. Med. 195, 535–545.

 

Zepeda Mendoza, M.L., Roggenbuck, M., Vargas, K.M., Hansen, L.H., Brunak, S., Gilbert, M.T.P., et al., 2018. Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Vet. Scand. 60, 61.

 

Zhang, G.J., Li, C., Li, Q.Y., Li, B., Larkin, D.M., Lee, C., et al., 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320.

 

Zhou, C., Wang, G.N., Yu, H.R., Geng, Y., Wu, W., Tu, H.M., et al., 2019. Genome-wide analysis reveals the genomic features of the Turkey vulture (Cathartes aura) as a scavenger. Mol. Genet. Genom. 294, 679–692.

 

Zou, D.H., Tian, S.L., Zhang, T.Z., Zhuoma, N.M., Wu, G.S., Wang, M.Y., et al., 2021. Vulture genomes reveal molecular adaptations underlying obligate scavenging and low levels of genetic diversity. Mol. Biol. Evol. 38, 3649–3663.

Avian Research
Article number: 100128
Cite this article:
Chen Y, Xiang L, Chen P, et al. Vultures as a model for testing molecular adaptations of dietary specialization in birds. Avian Research, 2023, 14(3): 100128. https://doi.org/10.1016/j.avrs.2023.100128

405

Views

10

Downloads

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 02 January 2023
Revised: 09 June 2023
Accepted: 16 August 2023
Published: 19 August 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return