AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (998.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Home range variability and philopatry in Cinereous vultures (Aegypius monachus) breeding in Iberia

Jorge García-Macíaa( )Ernesto ÁlvarezbManuel GalánbJuan José Iglesias-LebrijabMarc GálvezcGerard PlanadNúria VallverdúdVicente Uriosa
Grupo de Investigación Zoología de Vertebrados, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain
GREFA (Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat), C/Monte del Pilar S/N, E-28220, Majadahonda, Spain
Cos d’Agents Rurals de la Generalitat de Catalunya, Spain
Associació Trenca, Lleida, Spain
Show Author Information

Abstract

Large scavengers are strongly dependent on environmental conditions and carrion distribution and abundance, so season and breeding-related factors may influence the spatial ecology of species such as the Cinereous Vulture (Aegypius monachus), the largest European raptor. Iberia holds one of the biggest populations worldwide, but some aspects of the spatial ecology of the species in this region remain unknown. In this study, 17 adult Cinereous Vultures were GPS-tracked in order to study their spatial ecology during the adult phase. The average monthly home ranges (95% Kernel Density Estimation, KDE) and core areas (50% KDE) were 6543 ​± ​19,935 ​km2 and 1174 ​± ​4004 ​km2, respectively. The average monthly home range fidelity ranged between 50 and 73%. Differences in movement-related variables between the seasonal periods (incubation, chick-rearing and non-breeding) were found. During the chick-rearing period, the monthly accumulated distance was higher than during the other periods: 3316 ​± ​1108 (chick-rearing) vs. 1621 ​± ​622 (incubation) vs. 1726 ​± ​1159 ​km per month (non-breeding). Additionally, large home range sizes were more frequent during the chick-rearing period. There are two likely causes for these seasonal differences. Firstly, chick-rearing entails a higher energetic expenditure by the parental individuals in foraging activities, so larger movements and foraging areas are expected during this period. Secondly, the flight is favoured during spring and summer due to environmental conditions. Matching chick-rearing and warm months is a great evolutionary advantage for soaring-gliding raptors, as it allows them to cover larger areas with low energy expenditure. Furthermore, six individuals tagged as nestlings highlight the philopatric behaviour of the species: vultures settle their breeding areas 54 ​± ​51 ​km from their natal nest (range ​= ​9–138 ​km).

References

 

Arrondo, E., García-Alonso, M., Blas, J., Cortes-Avizanda, A., de la Riva, M., Devault, T.L., et al., 2021. Use of avian GPS tracking to mitigate human fatalities from bird strikes caused by large soaring birds. J. Appl. Ecol. 58, 1411–1420. https://doi.org/10.1111/1365-2664.13893.

 

Arrondo, E., Moleón, M., Cortés-Avizanda, A., Jiménez, J., Beja, P., Sánchez-Zapata, J.A., et al., 2018. Invisible barriers: differential sanitary regulations constrain vulture movements across country borders. Biol. Conserv. 219, 46–52. https://doi.org/10.1016/j.biocon.2017.12.039.

 

Becker, P.H., Bradley, J.S., 2007. The role of intrinsic factors for the recruitment process in long-lived birds. J. Ornithol. 148, 377–384. https://doi.org/10.1007/s10336-007-0157-x.

 

Bodey, T.W., Cleasby, I.R., Bell, F., Parr, N., Schultz, A., Votier, S.C., et al., 2018. A phylogenetically controlled meta-analysis of biologging device effects on birds: deleterious effects and a call for more standardized reporting of study data. Methods Ecol. Evol. 9, 946–955.

 

Bosè, M., Duriez, O., Sarrazin, F., 2012. Intra-specific competition in foraging Griffon Vultures Gyps fulvus: 1. Dynamics of group feeding. Hous. Theor. Soc. 59, 182–192. https://doi.org/10.1080/00063657.2012.658639.

 

Cadahía, L., López-López, P., Urios, V., Álvaro, S., Negro, J.J., 2009. Natal dispersal and recruitment of two Bondelli's Eagle Aquila fasciata: a four-year satellite tracking study. Acta Ornithol. (Warszaw) 44, 193–198. https://doi.org/10.3161/000164509X482777.

 

Calenge, C., 2006. The package adehabitat for the R software: tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035.

 

Carrete, M., Donázar, J.A., 2005. Application of central-place foraging theory shows the importance of Mediterranean dehesas for the conservation of the Cinereous Vulture, Aegypius monachus. Biol. Conserv. 126, 582–590. https://doi.org/10.1016/j.biocon.2005.06.031.

 

Costillo, E., Corbacho, C., Marón, R., Villegas, A., 2007. Diet plasticity of cinereous vulture Aegypius monachus in different colonies in the Extremadura (SW Spain). Ardea 95, 201–211.

 
Cramp, S., Simmons, K.E.L., 1980. Handbook of the birds of Europe the Middle East and north Africa. In: The Birds of the Western Palearctic, vol. Ⅱ. Hawks to Bustards. Oxford University Press, Oxford.
 
del Moral, J.C., 2017. El Buitre Negro en España, Población Reproductora en 2017 y Método de Censo. SEO/BirdLife, Madrid.
 
del Moral, J.C., 2022. Buitre negro Aegypius monachus. In: Molina, B., Nebreda, A., Muñoz, A.R., Seoane, J., Real, R., Bustamante, J., et al. (Eds.), Ⅲ Atlas de Las Aves en época de Reproducción en España. SEO/BirdLife, Madrid. https://atlasaves.seo.org/ave/buitre-negro/.
 
Donázar, J.A., 1993. Los Buitres Ibéricos: Biología y Conservación. first ed. J.M. Reyero, Madrid.
 

Ellegren, H., 1996. First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc. R. Soc. A B 263, 1635–1641.

 
Garcelon, D.K., 1985. Mounting Backpack Telemetry Packages on Bald Eagles. Institute for Wildlife Studies, Arcata (California).
 

García, V., Iglesias, J.J., Moreno-Opo, R., 2021. Null effects of Garcelon harnessing method and transmitter type on soaring raptors. Ibis 163, 899–912. https://doi.org/10.1111/ibi.12942.

 

García-Jiménez, R., Pérez-García, J.M., Margalida, A., Morales-Reyes, Z., 2022. Avian scavengers' contributions to people: the cultural dimension of wildlife-based tourism. Sci. Total Environ. 806, 150419. https://doi.org/10.1016/j.scitotenv.2021.150419.

 

García-Macía, J., de La Puente, J., Bermejo, A., Urios, V., 2022a. High variability and dual strategy in the wintering Red Kites (Milvus milvus). Diversity 14, 117. https://doi.org/10.3390/d14020117.

 

García-Macía, J., López-Poveda, G., de La Puente, J., Bermejo-Bermejo, A., Galán, M., Álvarez, E., et al., 2022b. The variability of juvenile dispersal in an opportunistic raptor. Curr. Zool. 69, 244–254. https://doi.org/10.1093/cz/zoac039.

 

Gavashelishvili, A., McGrady, M., Ghasabian, M., Bildstein, K.L., 2012. Movements and habitat use by immature cinereous vultures (Aegypius monachus) from the caucasus. Hous. Theor. Soc. 59, 449–462. https://doi.org/10.1080/00063657.2012.728194.

 

Gil, J.A., Báguena, G., Sánchez-Castilla, E., Antor, R.J., Alcántara, M., López-López, P., 2014. Home ranges and movements of non-breeding bearded vultures tracked by satellite telemetry in the Pyrenees. ARDEOLA 61, 379–387. https://doi.org/10.13157/arla.61.2.2014.379.

 

Hernández-Matías, A., Real, J., Pradel, R., Ravayrol, A., Vincent-Martin, N., Bosca, F., et al., 2010. Determinants of territorial recruitment in Bonelli's Eagle (Aquila fasciata) populations. Auk 127, 173–184. https://doi.org/10.1525/auk.2009.09143.

 

Hernández, M., Margalida, A., 2008. Pesticide abuse in Europe: effects on the cinereous vulture (Aegypius monachus) population in Spain. Ecotoxicology 17, 264–272. https://doi.org/10.1007/s10646-008-0193-1.

 
Hiraldo, F., 1983. Breeding biology of the cinereous vulture. In: Wilbur, S.R., Jackson, J.A. (Eds.), Vulture Biology and Management. University of California Press, Berkeley.
 

Iglesias-Merchán, C., Diaz-Balteiro, L., de la Puente, J., 2016. Road traffic noise impact assessment in a breeding colony of Cinereous Vultures (Aegypius monachus) in Spain. J. Acoust. Soc. Am. 139, 1124–1131. https://doi.org/10.1121/1.4943553.

 

Kang, J.H., Hyun, B.R., Kim, I.K., Lee, H., Lee, J.K., Hwang, H.S., et al., 2019. Movement and home range of Cinereous Vulture Aegypius monachus during the wintering and summering periods in East Asia. Turk. Zool. Derg. 43, 305–313. https://doi.org/10.3906/zoo-1807-3.

 
Kernhoan, B.J., Gitzen, R.A., Millspaugh, J.J., 2001. Analysis of animal space use and movements. In: Millspaugh, J.J., Marzluff, J.M. (Eds.), Radio Tracking Animal Populations. Academic Press, San Diego, pp. 125–166.
 

Kim, J.H., Chung, O.S., Lee, W.S., Kanai, Y., 2007. Migration routes of cinereous vultures Aegypius monachus in northeast Asia. J. Raptor Res. 41, 161–165. https://doi.org/10.3356/0892-1016(2007)41[161:MROCVA]2.0.CO;2.

 

López-López, P., Perona, A., Egea-Casas, O., Etxebarria Morant, J., Urios, V., 2021. Trixial accelerometry shows differences in energy expenditure and parental effort throughout the breeding season in long-lived raptors. Curr. Zool. 68, 57–67. https://doi.org/10.1093/cz/zoab010.

 

Morales-Reyes, Z., Pérez-García, J.M., Moleón, M., Botella, F., Carrete, M., Donázar, J.A., et al., 2016. Evaluation of the network of protection areas for the feeding of scavengers in Spain: from biodiversity conservation to greenhouse gas emission savings. J. Appl. Ecol. 54, 1120–1129. https://doi.org/10.1111/1365-2664.12833.

 

Morán-López, R., Sánchez, J.M., Costillo, E., Corbacho, C., Villegas, A., 2006. Spatial variation in anthropic and natural factors regulating the breeding success of the Cinereous Vulture (Aegypius monachus) in the SW Iberian Peninsula. Biol. Conserv. 130, 169–182. https://doi.org/10.1016/j.biocon.2005.12.011.

 

Morant, J., Arrondo, E., Sanchez-Zapata, J., Donázar, J.A., Cortés-Avizanda, A., de la Riva, M., et al., 2023. Large-scale movement patterns in a social vulture are influenced by seasonality, sex, and breeding region. Ecol. Evol. 13, e9817. https://doi.org/10.1002/ece3.9817.

 

Moreno-Opo, R., Arrerondo, Á., Guil, F., 2010. Foraging range and diet of Cinereous Vulture Aegypius monachus using livestock resources in central Spain. ARDEOLA 57, 111–119. https://www.ardeola.org/en/volumes/571/articles/111-119/.

 

Moreno-Opo, R., Fernández-Olalla, M., Margalida, A., 2013. Influence of environmental factors on the breeding success of Cinereous Vultures Aegypius monachus. Acta Ornithol. 48, 187–193. https://doi.org/10.3161/000164513X678838.

 

Moreno-Opo, R., Trujillano, A., Margalida, A., 2020. Larger size and older age confer competitive advantage: dominance hierarchy within European vulture guild. Sci. Rep. 10, 2430. https://doi.org/10.1038/s41598-020-59387-4.

 

Morollón, S., Urios, V., López-López, P., 2022. Home-range size and space use of territorial Bonelli's Eagles (Aquila fasciata) tracked by high-resolution GPS/GSM telemetry. Diversity 14, 1082. https://doi.org/10.3390/d14121082.

 
Newton, I., 2010. Bird Migration. William Collins, Glasgow.
 

O'Bryan, C.J., Braczkowski, A.R., Beyer, H.L., Carter, N.H., Watson, J.E.M., McDonaldMadden, E., 2018. The contribution of predators and scavengers to human wellbeing. Nat. Ecol. Evol. 2, 229–236. https://doi.org/10.1038/s41559-017-0421-2.

 

Ramírez, J., Elorriaga, J., de La Cruz, A., 2022. Cinereous vulture Aegypius monachus movements between Europe and Africa show a pattern across the strait of Gibraltar. Ostrich 93, 151–156. https://doi.org/10.2989/00306525.2022.2103195.

 

Ruxton, G.D., Houston, D.C., 2004. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436. https://doi.org/10.1016/j.jtbi.2004.02.005.

 

Sebastián-González, E., Morales-Reyes, Z., Botella, F., Naves-Alegre, L., PérezGarcía, J.M., Mateo-Tomás, P., et al., 2020. Network structure of vertebrate scavenger assemblages at the global scale: drivers and ecosystem functioning implications. Ecography 43, 1143–1155. https://doi.org/10.1111/ecog.05083.

 

Signer, J., Fieberg, J., Avgar, T., 2019. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890. https://doi.org/10.1002/ece3.4823.

 

Svanbäck, R., Bolnick, D.I., 2005. Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol. Ecol. Res. 7, 993–1012.

 
Tewes, E., 1996. The European Black Vulture (Aegypius Monachus L.), Management Techniques and Habitat Requirements. University of Vienna, Vienna.
 

Van Overveld, T., García-Alfonso, M., Dingemanse, N.J., Bouten, W., Gangoso, L., de la Riva, M., et al., 2018. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155. https://doi.org/10.1038/s41598-018-33564-y.

 

Vasilakis, D.P., Poirazidis, K.S., Elorriaga, J.N., 2008. Range use of a eurasian black vulture (Aegypius monachus) population in the dadia–lefkimi–soufli national Park and the adjacent areas, thrace, NE Greece. J. Nat. Hist. 42, 355–373. https://doi.org/10.1080/00222930701835308.

 

Vidal-Mateo, J., Romero, M., Urios, V., 2019. How can the home range of the Lesser Kestrel be affected by a large civil infrastructure? Avian Res. 10, 10. https://doi.org/10.1186/s40657-019-0149-6.

 

Yamaç, E., Bilgin, C.C., 2012. Post-fledging movements Cinereous Vultures Aegypius monachus in Turkey revealed by GPS telemetry. Ardea 100, 149–156. https://doi.org/10.5253/078.100.0206.

Avian Research
Article number: 100134
Cite this article:
García-Macía J, Álvarez E, Galán M, et al. Home range variability and philopatry in Cinereous vultures (Aegypius monachus) breeding in Iberia. Avian Research, 2023, 14(4): 100134. https://doi.org/10.1016/j.avrs.2023.100134

159

Views

9

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 March 2023
Revised: 23 August 2023
Accepted: 04 September 2023
Published: 15 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return