AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Short-term night lighting disrupts lipid and glucose metabolism in Zebra Finches: Implication for urban stopover birds

Na Zhua,b,1Jing Shanga,b,1Shuping Zhanga,b( )
Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

1 The authors contributed equally to this work.

Show Author Information

Abstract

Night lighting has been shown to affect wild animals. To date, the effects of night lighting on the metabolic homeostasis of birds that spend short time in urban environments remain unclear. Using model bird species Zebra Finch (Taeniopygia guttata), we investigated the effects of short-term night lighting on liver transcriptome, blood glucose, triglyceride, and thyroxine (T4 and T3) levels in birds exposed to two different night lighting duration periods (three days and six days). After three days of night lighting exposure, the expression of genes involved in fat synthesis in the liver was upregulated while the expression of genes involved in fatty acid oxidation and triglyceride decomposition was downregulated. There was also a reduction in blood triglyceride, glucose, and T3 concentrations. However, after six days of night lighting, the expression of genes associated with fatty acid decomposition and hyperglycemia in the liver was upregulated, while the expression of genes involved in fat synthesis was downregulated. Simultaneously, blood glucose levels and T3 concentration increased. These findings indicate that short-term exposure to night lighting can disrupt the lipid and glucose metabolism of small passerine birds, and longer stopovers in urban area with intense night lighting may cause birds to consume more lipid energy.

References

 

Alaasam, V.J., Duncan, R., Casagrande, S., Davies, S., Sidher, A., Seymoure, B., et al., 2018. Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 465–472.

 

Alaasam, V.J., Liu, X., Niu, Y., Habibian, J.S., Pieraut, S., Ferguson, B.S., et al., 2021. Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird. Environ. Pollut. 282, 117036.

 

Aulsebrook, A.E., Connelly, F., Johnsson, R.D., Jones, T.M., Mulder, R.A., Hall, M.L., et al., 2020. White and amber light at night disrupt sleep physiology in birds. Curr. Biol. 30, 3657–3663.

 

Bairlein, F., Fritz, J., Scope, A., Schwendenwein, I., Stanclova, G., van Dijk, G., et al., 2015. Energy expenditure and metabolic changes of free-flying migrating Northern bald ibis. PLoS One 10, e0134433.

 

Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Thomas, T.L., et al., 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6, 544–556.

 

Brockmöller, S.F., Bucher, E., Müller, B.M., Budczies, J., Hilvo, M., Griffin, J.L., et al., 2012. Integration of metabolomics and expression of glycerol-3-phosphate acyltransferase (GPAM) in breast cancer-link to patient survival, hormone receptor status, and metabolic profiling. J. Proteome Res. 11, 850–860.

 

Brown, S.A., Kunz, D., Dumas, A., Westermark, P.O., Vanselow, K., Tilmann-Wahnschaffe, A., et al., 2008. Molecular insights into human daily behavior. Proc. Natl. Acad. Sci. U.S.A. 105, 1602–1607.

 

Bumgarner, J.R., Nelson, R.J., 2021. Light at night and disrupted circadian rhythms alter physiology and behavior. Integr. Comp. Biol. 61, 1160–1169.

 

Cailotto, C., van Heijningen, C., van der Vliet, J., van der Plasse, G., Habold, C., Kalsbeek, A., et al., 2008. Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver. Endocrinology 149, 1914–1925.

 

Cao, J., Li, J.L., Li, D., Tobin, J.F., Gimeno, R.E., 2006. Molecular identification of microsomal acyl-CoA: glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc. Natl. Acad. Sci. U.S.A. 103, 19695–19700.

 

Chan, C.W., Chan, M.W., Liu, M., Fung, L., Cole, E.H., Leibowitz, J.L., et al., 2002. Kinetic analysis of a unique direct prothrombinase, fgl2, and identification of a serine residue critical for the prothrombinase activity. J. Immunol. 168, 5170–5177.

 

Chastel, O., Andre, L., Kersten, M., 2003. Prebreeding energy requirements: thyroid hormone, metabolism and the timing of reproduction in House sparrow Passer domesticus. J. Avian Biol. 34, 298–306.

 

Chen, Y.Q., Kuo, M.S., Li, S., Bui, H.H., Peake, D.A., Sanders, P.E., et al., 2008. AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J. Biol. Chem. 283, 10048–10057.

 

Cohen, E.B., Lafleur, J.M., Moore, F.R., 2022. Density dependent refueling of migratory songbirds during stopover within an urbanizing coastal landscape. Front. Ecol. Evol. 10, 837790.

 

Coomans, C.P., van den Berg, S.A., Houben, T., van Klinken, J.B., van den Berg, R., Pronk, A.C., Meijer, J.H., 2013. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. Faseb. J. 27, 1721–1732.

 

Cooper, L.N., Mishra, I., Ashley, N.T., 2019. Short-term sleep loss alters cytokine gene expression in brain and peripheral tissues and increases plasma corticosterone of Zebra Finch (Taeniopygia guttata). Physiol. Biochem. Zool. 92, 80–91.

 

Dominoni, D.M., Goymann, W., Helm, B., Partecke, J., 2013. Urban-like night illumination reduces melatonin release in European blackbirds (Turdus merula): implications of city life for biological time-keeping of songbirds. Front. Zool. 10, 60.

 

Eales, J.G., 1988. The influence of nutritional state on thyroid function in various vertebrates. Am. Zool. 28, 351–362.

 

Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C.C., Elvidge, C.D., Baugh, K., et al., 2016. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377.

 

Fonken, L.K., Nelson, R.J., 2014. The effects of light at night on circadian clocks and metabolism. Endocr. Rev. 35, 648–670.

 

Fonken, L.K., Workman, J.L., Walton, J.C., Weil, Z.M., Morris, J.S., Haim, A., et al., 2010. Light at night increases body mass by shifting the time of food intake. Proc. Natl. Acad. Sci. U.S.A. 107, 18664–18669.

 

Grimaldi, B., Bellet, M.M., Katada, S., Astarita, G., Hirayama, J., Amin, R.H., et al., 2010. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metabol. 12, 509–520.

 

Hölker, F., Moss, T., Griefahn, B., Kloas, W., Voigt, C.C., Henckel, D., et al., 2010. The dark side of light: a transdisciplinary research agenda for light pollution policy. Ecol. Soc. 15, 13.

 

Horton, K.G., Nilsson, C., Doren, B.M.V., Sorte, F.A.L., Dokter, A.M., Farnsworth, A., 2019. Bright lights in the big cities: migratory birds’ exposure to artificial light. Front. Ecol. Environ. 17, 209–214.

 

Jesko, P., Van’t Hof, T.J., Eberhard, G., 2005. Underlying physiological control of reproduction in urban and forest-dwelling European blackbirds Turdus merula. J. Avian Biol. 36, 295–305.

 

Johnson, B.P., Walisser, J.A., Liu, Y., Shen, A.L., McDearmon, E.L., Moran, S.M., et al., 2014. Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proc. Natl. Acad. Sci. U.S.A. 111, 18757–18762.

 

Kupprat, F., Kloas, W., Krüger, A., Schmalsch, C., Hölker, F., 2021. Misbalance of thyroid hormones after two weeks of exposure to artificial light at night in Eurasian perch Perca fluviatilis. Conserv. Physiol. 9, coaa124.

 

La Sorte, F.A., Fink, D., Buler, J.J., Farnsworth, A., Cabrera-Cruz, S.A., 2017. Seasonal associations with urban light pollution for nocturnally migrating bird populations. Global Change Biol. 23, 4609–4619.

 

Lamia, K.A., Storch, K.F., Weitz, C.J., 2008. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 105, 15172–15177.

 

Lamia, K.A., Papp, S.J., Yu, R.T., Barish, G.D., Uhlenhaut, N.H., Jonker, J.W., et al., 2011. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556.

 

Liu, Y.Y., Brent, G.A., 2010. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends Endocrinol. Metabol. 21, 166–173.

 

Luarte, T., Bonta, C.C., Silva-Rodriguez, E.A., Quijón, P.A., Miranda, C., Farias, A.A., et al., 2016. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate. Environ. Pollut. 218, 1147–1153.

 

Lynn, K.D., Quintanilla-Ahumada, D., Anguita, C., Widdicombe, S., Pulgar, J., Manríquez, P.H., et al., 2021. Artificial light at night alters the activity and feeding behaviour of sandy beach amphipods and pose a threat to their ecological role in Atlantic Canada. Sci. Total Environ. 780, 146568.

 

Magnusson, I., Rothman, D.L., Jucker, B., Cline, G.W., Shulman, R.G., Shulman, G.I., 1994. Liver glycogen turnover in fed and fasted humans. Am. J. Physiol. 266, E796–E803.

 

Malek, I., Haim, A., 2019. Bright artificial light at night is associated with increased body mass, poor reproductive success and compromised disease tolerance in Australian budgerigars (Melopsittacus undulatus). Integr. Zool. 14, 589–603.

 

Martin, N.H., Neuberger, A., 1957. Protein metabolism and the liver. Br. Med. Bull. 13, 113–118.

 
Marzluff, J.M., 2001. Worldwide urbanization and its effects on birds. In: Marzluff, J.M., Bowman, R., Donnelly, R. (Eds.), Avian Ecology and Conservation in an Urbanizing World. Springer, Boston, pp. 19–47.
 

Masís-Vargas, A., Ritsema, W.I.G.R., Mendoza, J., Kalsbeek, A., 2020. Metabolic effects of light at night are time- and wavelength-dependent in rats. Obesity 28, S114–S125.

 

McLaren, J.D., Buler, J.J., Schreckengost, T., Smolinsky, J.A., Boone, M., van Loon, E.E., et al., 2018. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 21, 356–364.

 

Mensenkamp, A.R., Havekes, L.M., Romijn, J.A., Kuipers, F., 2001. Hepatic steatosis and very low density lipoprotein secretion: the involvement of apolipoprotein. E. J. Hepatol. 35, 816–822.

 

Moaraf, S., Vistoropsky, Y., Pozner, T., Heiblum, R., Okuliarová, M., Zeman, M., et al., 2020. Artificial light at night affects brain plasticity and melatonin in birds. Neurosci. Lett. 716, 134639.

 

Nagai, N., Ayaki, M., Yanagawa, T., Hattori, A., Negishi, K., Mori, T., et al., 2019. Suppression of blue light at night ameliorates metabolic abnormalities by controlling circadian rhythms. Invest. Ophthalmol. Vis. Sci. 60, 3786–3793.

 

Nassar, M., Halle, I., Plagemann, A., Tzschentke, B., 2015. Detection of long-term influence of prenatal temperature stimulation on hypothalamic type-Ⅱ iodothyronine deiodinase in juvenile female broiler chickens using a novel immunohistochemical amplification protocol. Comp. Biochem. Physiol. Mol. Integr. Physiol. 179, 120–124.

 

Navara, K.J., Nelson, R.J., 2007. The dark side of light at night: physiological, epidemiological, and ecological consequences. J. Pineal Res. 43, 215–224.

 

Okuliarova, M., Rumanova, V.S., Stebelova, K., Zeman, M., 2020. Dim Light at Night Disturbs Molecular Pathways of Lipid Metabolism. Mol. Sci. 21, E6919.

 

Opperhuizen, A.L., Stenvers, D.J., Jansen, R.D., Foppen, E., Fliers, E., Kalsbeek, A., 2017. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia 60, 1333–1343.

 

Ouyang, J.Q., de Jong, M., Hau, M., Visser, M.E., van Grunsven, R.H., Spoelstra, K., 2015. Stressful colours: corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination. Biol. Lett. 11, 20150517.

 

Ouyang, J.Q., de Jong, M., van Grunsven, R.H.A., Matson, K.D., Haussmann, M.F., Meerlo, P., et al., 2017. Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living songbird. Global Change Biol. 23, 4987–4994.

 

Pérez, J. H., Meddle, S. L., Wingfield, J. C., et al., 2018. Effects of thyroid hormone manipulation on pre-nuptial molt, luteinizing hormone and testicular growth in male white-crowned sparrows (Zonotrichia leuchophrys gambelii). Gen. Comp. Endocr. 255, 12–18.

 

Pucci, E., Chiovato, L., Pinchera, A., 2000. Thyroid and lipid metabolism. Int. J. Obes. 24, S109–S112.

 

Raap, T., Pinxten, R., Eens, M., 2016. Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period, and is followed by a sleep rebound. Environ. Pollut. 215, 125–134.

 

Raap, T., Thys, B., Grunst, A.S., Grunst, M.L., Pinxten, R., Eens, M., 2018. Personality and artificial light at night in a semi-urban songbird population: No evidence for personality-dependent sampling bias, avoidance or disruptive effects on sleep behaviour. Environ. Pollut. 243, 1317–1324.

 

Rumanova, V.S., Okuliarova, M., Molcan, L., Sutovska, H., Zeman, M., 2019. Consequences of low-intensity light at night on cardiovascular and metabolic parameters in spontaneously hypertensive rats. Can. J. Physiol. Pharmacol. 97, 863–871.

 

Russ, A., Rüger, A., Klenke, R., 2015. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156, 123–131.

 

Salem, M., Silverstein, J., Rexroad, C.E., 2007. Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). Genomics 8, 328.

 

Sando, K.R., Knight, M., 2015. Nonstatin therapies for management of dyslipidemia: a review. Clin. Therapeut. 37, 2153–2179.

 

Seewagen, C.L., Slayton, E.J., Guglielmo, C.G., 2010. Passerine migrant stopover duration and spatial behaviour at an urban stopover site. Acta Oecol. 36, 484–492.

 

Seewagen, C.L., Sheppard, C.D., Slayton, E.J., 2011. Plasma metabolites and mass changes of migratory landbirds indicate adequate stopover refueling in a heavily urbanized landscape. Condor 113, 284–297.

 

Singh, J., Rani, S., Kumar, V., 2012. Functional similarity in relation to the external environment between circadian behavioral and melatonin rhythms in the subtropical Indian weaver bird. Horm. Behav. 61, 527–534.

 

Taufique, S.K.T., Prabhat, A., Kumar, V., 2018. Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids. Eur. J. Neurosci. 48, 3005–3018.

 

Ursino, G., Coppari, R., 2020. Insulin under the influence of light. Swiss Med. Wkly. 150, w20273.

 

Van Doren, B.M., Horton, K.G., Dokter, A.M., Klinck, H., Elbin, S.B., Farnsworth, A., 2017. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl. Acad. Sci. U.S.A. 114, 11175–11180.

 

Villena, J.A., Roy, S., Sarkadi-Nagy, E., Kim, K.H., Sul, H.S., 2004. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 279, 47066–47075.

 

Vinogradova, I.A., Anisimov, V.N., Bukalev, A.V., Ilyukha, V.A., Khizhkin, E.A., Lotosh, T.A., et al., 2009. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging 1, 855–865.

 

Vollmers, C., Gill, S., DiTacchio, L., Pulivarthy, S.R., Le, H.D., Panda, S., 2009. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. U.S.A. 106, 21453–21458.

 

Wang, Y., Zhang, Y., Qian, H., Lu, J., Zhang, Z., Min, X., et al., 2013. The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism. PLoS One 8, e72315.

 

Wang, Y., Campbell, J.B., Kaftanoglu, O., Page, R.E., Amdam Jr., G.V., Harrison, J.F., 2016. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.). J. Exp. Biol. 219, 960–968.

 

Watson, H., Videvall, E., Andersson, M.N., Isaksson, C., 2017. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180.

 

Weinstock, P.H., Bisgaier, C.L., Aalto-Setälä, K., Radner, H., Ramakrishnan, R., Levak-Frank, S., et al., 1995. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J. Clin. Invest. 96, 2555–2568.

 

Williams, G.R., Bassett, J.H., 2011. Deiodinases: the balance of thyroid hormone: local control of thyroid hormone action: role of type 2 deiodinase. J. Endocrinol. 209, 261–272.

 

Yang, X., Lu, X., Lombès, M., Rha, G.B., Chi, Y-I., Guerin, T.M., et al., 2010. The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metabol. 11, 194–205.

 

Yen, P.M., 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81, 1097–1142.

 

Zhang, X., Heckmann, B.L., Campbell, L.E., Liu, J., 2017b. G0S2: A small giant controller of lipolysis and adipose-liver fatty acid flux. BBA-Mol. Cell Biol. L. 1862, 1146–1154.

 

Zhang, E.E., Liu, Y., Dentin, R., Pongsawakul, P.Y., Liu, A.C., Hirota, T., et al., 2010. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152–1156.

 

Zhang, X., Xie, X., Heckmann, B.L., Saarinen, A.M., Czyzyk, T.A., Liu, J., 2014b. Targeted disruption of G0/G1 switch gene 2 enhances adipose lipolysis, alters hepatic energy balance, and alleviates high-fat diet-induced liver steatosis. Diabetes 63, 934–946.

 

Zhang, S., Chen, X., Zhang, J., Li, H., 2014a. Differences in the reproductive hormone rhythm of tree sparrows (Passer montanus) from urban and rural sites in Beijing: the effect of anthropogenic light sources. Gen. Comp. Endocrinol. 206, 24–29.

 

Zhang, S., Xu, X., Wang, W., Zhao, L., Gao, L., Yang, W., 2017a. Annual variation in the reproductive hormone and behavior rhythm in a population of the Asian short-toed lark: can spring temperature influence activation of the HPG axis of wild birds? Horm. Behav. 95, 76–84.

 

Ziegler, A.K., Watson, H., Hegemann, A., Meitern, R., Canoine, V., Nilsson, J., et al., 2021. Exposure to artificial light at night alters innate immune response in wild great tit nestlings. J. Exp. Biol. 224 jeb239350.

 

Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., et al., 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.

Avian Research
Article number: 100138
Cite this article:
Zhu N, Shang J, Zhang S. Short-term night lighting disrupts lipid and glucose metabolism in Zebra Finches: Implication for urban stopover birds. Avian Research, 2023, 14(4): 100138. https://doi.org/10.1016/j.avrs.2023.100138

173

Views

6

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 February 2023
Revised: 22 August 2023
Accepted: 21 September 2023
Published: 12 October 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return